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DESTRUCTIVE AND NON-DESTRUCTIVE TESTING OF BRIDGE J857 
PHELPS COUNTY, MISSOURI 

VOLUME I 
STRENGTHENING AND TESTING TO FAILURE OF BRIDGE DECKS 

 
EXECUTIVE SUMMARY 

 
Concrete bridges are conventionally reinforced with steel bars and/or prestressed with 

steel tendons.  When subjected to aggressive environments, corrosion of the reinforcing and 
prestressing steel occurs and eventually leads to premature structural deterioration and loss of 
serviceability.  In addition, the increasing service loads as well as seismic upgrade requirements 
result in a need to strengthen many of these bridges.  The use of externally bonded steel plates 
for flexural and shear strengthening of concrete members is well established.  However, 
corrosion related problems have limited the use of this technique for outdoor application.  Fiber 
reinforced polymer (FRP) composites are corrosion resistant and exhibit several properties that 
make them suitable for repair/strengthening of reinforced concrete (RC) structures.  However, 
the database for performance of FRP strengthened RC members is based on small-scale 
specimens that do not account for the variation of boundary conditions of a real structure.  Full-
scale field tests can demonstrate the actual behavior of a structure and can lead to a better 
understanding of the performance of the system and therefore strengthening design requirements.   

This part of the research program aimed at demonstrating the feasibility and effectiveness 
of strengthening bridge RC decks with two systems of externally bonded FRP reinforcement to 
increase their flexural strengths as well as verify design methodology and capacity improvement.  
Two of the three simply supported decks were strengthened and tested to failure.  One span was 
strengthened using near-surface mounted (NSM) CFRP rods while the second span was 
strengthened using externally bonded CFRP strips.  The objective of the strengthening scheme 
was to increase the flexural capacity by approximately 30%.  Each of the three spans was tested 
to failure by applying quasi-static load cycles.  Test results indicate that the actual capacity of the 
bridge decks were higher than anticipated due to higher actual material strengths.  In addition, 
the decks had end fixities that were estimated by comparison of experimental and theoretical 
results.  The experimental moment capacities compared well with theoretical values based on the 
actual material properties obtained from laboratory testing and the determined end fixity.  
Strengthened decks exhibited ductile behavior prior to FRP failure.  The short-term behavior of 
FRP strengthening system applications has been experimentally evaluated.  Research into long-
term performance should be conducted even though FRP used in highway bridges is expected to 
perform for a long time. 

The final report consists of three volumes.  Volume I depicts the strengthening and 
testing to failure of the three bridge decks.  Volume II focuses on the laboratory and field 
dynamic tests.  Volume III focuses on the strengthening and testing to failure of the bridge piers. 
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1. INTRODUCTION 

 
1.1. GENERAL 

Concrete bridges are conventionally reinforced with steel bars and/or prestressed with 
steel tendons.  When subjected to aggressive environments (e.g., treatment with deicing salts or 
exposure to marine environment), combinations of moisture, temperature and chlorides, 
corrosion of the reinforcing and prestressing steel occurs and eventually leads to premature 
structural deterioration and loss of serviceability.  In addition, the continuous increase in service 
loads due to growing axle weights and traffic volumes and the current building codes demand on 
seismic performance result in a need to strengthen many of these bridges.  In the United States 
alone, over 40 percent of the 590,000 structures in the National Bridge Inventory database need 
repair, strengthening, or replacement (Small, 1998).  Due to budget constraints, the cost to 
replace these structures is beyond the financial means of most Departments of Transportation 
(DOT).  

The use of externally bonded steel plates for flexural and shear strengthening of concrete 
members is well established for interior applications and for non-corrosive environments 
(L'Hermite and Bresson 1967, Swamy et al. 1987).  However, corrosion related problems have 
limited the use of this technique for outdoor application. 

Advanced composites made of fibers embedded in a polymeric resin, also known as fiber 
reinforced polymer (FRP) materials, are corrosion resistant and exhibit several properties 
suitable for their use as structural reinforcement (ACI Committee 440 1996, Meier 1987).  
Repair and strengthening of structures with FRP composites involves the use of externally 
bonded sheets, prefabricated laminates, and near surface mounted bars.  

The most important characteristic of FRP in repair and strengthening applications is the 
speed and ease of installation.  The higher material cost of FRP is typically offset by reduced 
labor, machinery, and shut-down costs, making FRP strengthening systems very competitive 
with traditional strengthening techniques such as steel plate bonding and section enlargement.  
FRP reinforcement could provide significant savings in costly corrosion problems and provide a 
more efficiently built infrastructure into the next century.  However, the extensive use of bonded 
FRP composites in bridges and structures requires the development of official design guidelines 
and construction specifications.  The lack of these guidelines has so far limited the number of 
applications for the strengthening of U.S. bridges and structures.  In response to this, the Federal 
Highway Administration (FHWA) is currently sponsoring research programs to develop 
specifications for repair/strengthening of existing bridges using FRP composites and to ensure 
the quality and performance of FRP strengthening. 

Strengthening by externally bonded FRP has been studied and implemented worldwide 
(Nanni, 1997).  However, the database for performance of FRP strengthened RC members is 
based on laboratory tests, which are usually conducted on small-scale specimens that do not 
account for the variation of boundary conditions of a real structure.  Full-scale field tests, on the 
other hand, can demonstrate the actual behavior of a structure and can lead to a better 
understanding of the performance of the system as a whole and therefore the strengthening 
design requirements. 
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1.2.   PROJECT PHILOSOPHY 
This project was intended to bridge the gap between theoretical and small-scale 

experiments typically performed in a controlled environment to the full-scale, real-life, behavior 
of structural bridge components strengthened with FRP.  The project involved the elaboration of 
a research program to demonstrate the effectiveness of FRP for strengthening of highway 
bridges.  The study was to result in recommendations for FRP strengthening of highway bridges 
for consideration and use by state highway agencies overseeing strengthening projects.  It was 
intended to provide supporting full-scale test data to develop design criteria based on a 
scientifically valid foundation. 
 
1.3.   COOPERATIVE FEATURES OF THE RESEARCH PROGRAM 

The research team assembled for this project provided an ideal combination of talents.  
The joint effort of two universities, industry, and a state DOT provided the premise for a 
successful outcome.  Participation of the Missouri Department of Transportation (MoDOT) in 
the research effort ensured that the project was carried out with a thrust on practicality.  Within 
the University of Missouri-Rolla (UMR), expertise was provided through two research centers 
that directly relate to the use of composites in construction.  The first center is the Center for 
Infrastructure Engineering Studies (CIES), and the second center is the University Transportation 
Center (UTC) focusing on advanced composite materials for infrastructure upgrade and non-
destructive testing technologies.  The University of Missouri-Columbia (UMC) provided the 
expertise and technical assistance based on previous experience in field-testing of bridges 
(Kemna, A. C., 1999 and Kemna, D. J., 1999)  

Among the industry participants was Structural Preservation Systems, Baltimore, MD, 
which is recognized nationwide as one of the industry's leading contractors in the field of 
structural repair and protection; and Master Builders Technologies, Cleveland, OH, which 
distributes FRP strengthening systems.   

In addition to planning, activity coordination, and task implementation, the work of the 
UMR team was coordinated with MoDOT officials.  This included holding periodic meetings 
and requesting technical assistance when needed.  

 
1.4.   ANTICIPATED BENEFITS 

With the expertise of the research team in FRP applications, field-testing capabilities, 
contribution of the industrial partners, and field demonstrations, the result of this project should 
help in verifying and demonstrating the effectiveness of FRP strengthening systems for the 
flexural upgrade of bridge components.  Repair/strengthening of concrete bridges using FRP 
composites could save public funds and provide more efficient rehabilitation of structures.  
Standard specifications for design, construction, and quality control tests for FRP 
repair/strengthening are necessary to allow for its use in concrete highway structures.  Although 
very interested in the benefits of FRP application, most state DOTs, design consultants and 
bridge engineers are unprepared or unwilling to use material systems not �sanctioned� by FHWA 
or AASHTO.  With this project, capacity improvement will be verified in the field and the test 
results will be made available to public agencies. 

 
1.5.   BACKGROUND ON FIBER REINFORCED POLYMERS 

FRP materials have superior properties with respect to strength, weight, durability, creep, 
and fatigue.  They exhibit several properties that make them suitable for use with concrete 
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structures (Iyer and Sen 1991, Neale and Labossiere 1992, White 1992, Nanni 1993, Nanni and 
Dolan 1993, Taerwe 1995, ACI Committee 440 1996, El-Badry 1996, Japan Society of Civil 
Engineers (JSCE) 1997(a&b), Benmokrane and Rahman 1998, Saadatmanesh and Ehsani 1998, 
and Dolan, Rizkallah, and Nanni 1999).  The current commercially available FRP reinforcements 
are made of continuous fibers of aramid (AFRP), carbon (CFRP), or glass (GFRP) impregnated 
in a resin matrix.  FRP composites can be produced by different manufacturing methods in many 
shapes and forms.  The most popular FRPs for concrete reinforcement are bars, prestressing 
tendons, pre-cured laminates/shells and fiber sheets.  Commonly used rods have various types of 
deformation systems, including externally wound fibers, sand coatings, and separately formed 
deformations.  These types are commonly used for internal concrete reinforcement.  FRP pre-
cured laminates/shells and sheets are commonly used for external concrete reinforcement.  FRP 
plane laminates have been used to replace bonded steel plates  (Sharif and Baluch 1996, Castro 
et al 1996) and FRP shells have been used as jackets for columns (Xiao and Ma 1997).  Bonded 
FRP essentially works as additional reinforcement to provide tensile strength.  FRP may be used 
on beams, girders, and slabs to provide additional flexural strength; on the sides of beams and 
girders to provide additional shear strength; or wrapped around columns to provide confinement 
and additional ductility (a primary concern in seismic upgrades).  Quality control is crucial to the 
successful application of FRP systems.  Most FRP strengthening systems are simple to install.  
However, improper installation (e.g., not properly mixing epoxy components or saturating the 
fibers, misaligning the fibers, etc.) could be avoided with careful attention.  

In Europe, research on the use of FRP in concrete structures started in the 1950�s 
(Rubinsky and Rubinsky 1954, Wines et al. 1966).  In the field of strengthening with FRP 
composites, pioneering work took place in the 1980�s, in Switzerland and resulted in successful 
practical applications (Meier 1987, Meier and Kaiser 1991).  It was in Switzerland where the 
first on-site repair by externally bonded FRP took place in 1991.  Since the first FRP reinforced 
highway bridge in 1986, programs have been implemented to increase the research and use of 
FRP reinforcement in Europe.  The European BRITE/EURAM Project, �Fiber Composite 
Elements and Techniques as Non-Metallic Reinforcement,� conducted extensive testing and 
analysis of the FRP materials from 1991 to 1996 (Taerwe, 1997).  A pan-European collaborative 
research program (EUROCRETE) was established.  The program started in December 1993 and 
ended in 1997.  It aimed to develop FRP reinforcement for concrete and included industrial 
partners from the United Kingdom, the Netherlands, Switzerland, France, and Norway.  

Along with Europe, Japan developed some of the first FRP applications for construction 
in the early 1980�s.  A sudden increase in the use of FRP composites occurred after the 1995 
Hyogoken Nanbu Earthquake in Japan.  As of 1997, the Japanese led FRP reinforcement usage 
with more than one thousand demonstration/commercial projects and FRP design provisions in 
their standard specifications of the Japan Society of Civil Engineers (JSCE, 1997).   

Until only a few years ago, application of FRP materials to concrete structures was only a 
subject of research in the United States and Canada.  Today, several companies are involved in 
the manufacturing, design, and installation of these systems in construction projects (Goldstien 
1996, Gangarao et al. 1997).  FRP materials have quickly risen from state-of-the-art to 
mainstream technology.  Composite strengthening systems have become very competitive with 
traditional strengthening techniques.  The United States had the leadership in the initial 
development of GFRP reinforcing bars.  Marshall-Vega, Marshall, Arkansas, first developed 
GFRP rebars for the purpose of reinforcing polymer concrete due to its thermal incompatibility 
with steel bars.  In the late 1970s, International Grating, Inc. entered the North American FRP 
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reinforcement market.  These two companies led the research and development of the FRP 
reinforcing bars for an expanding market into the 1980�s. 

 
1.6.   OVERVIEW OF THE RESEARCH PROGRAM 

This research program aimed at conducting experimental destructive and non-destructive 
tests on bridge J857, located in Phelps County, Missouri, in order to validate new strengthening 
technologies (i.e., externally bonded FRP sheets and near-surface mounted FRP rods).  The 
bridge was constructed in 1932 and consisted of three solid reinforced concrete (RC) decks.  The 
original drawings of the bridge are given in Appendix A.  The research program aimed at 
demonstrating the feasibility and effectiveness of bridge deck and bridge pier strengthening 
using different types of externally bonded FRP reinforcement to increase their flexural strength.   

Bridge J857 was ideal for this demonstration since it represented typical conditions of 
several bridges in Missouri and the surrounding Mid-America states constructed during the first 
half of the 20th century.   

 
1.6.1. Task I – Strengthening and Non-Destructive Testing 
Two of the three spans of the bridge were strengthened using externally bonded carbon 

FRP (CFRP) reinforcement.  One span was selected to be strengthened with surface bonded 
CFRP strips and the second span using near-surface mounted (NSM) CFRP rods.  The third deck 
was used as a reference point for comparison purposes.  Strengthening design was such that both 
strengthened decks have similar flexural strengths.  The objective of the strengthening scheme 
was to increase the current flexural capacity of the bridge by approximately 30%.  Two of the 
four columns, which were originally designed to carry only gravity loads, were upgraded by 
improving their flexural capacities using FRP composites and were tested to failure.  The piers 
were upgraded to a concrete structure under seismic performance category  (SPC) B.  Two 
columns of the bridge were strengthened with NSM CFRP rods to achieve different modes of 
failure (e.g., concrete crushing and CFRP bar rupture).  The columns were jacketed with carbon 
FRP (CFRP) to provide lateral support to the mounted rods and to meet certain seismic code 
requirements.  A third column was jacketed with Glass FRP (GFRP) to investigate its influence 
on the ductility and flexural capacity of the column.  A certified contractor implemented the 
bridge strengthening under UMR supervision.  Pull-off tests, a quality control measure of FRP 
sheets, was conducted.   
 

1.6.2. Task II – Destructive Testing of Bridge Decks 
 
1.6.2.1. Static Load Testing 
  Each of the three spans was tested to failure by the application of quasi-static load 

cycles.  The magnitude of the maximum load used in each successive load cycle was 
incremented until failure of the slab was achieved.  Destructive tests provided conclusive 
evidence as to the strength of the bridge deck.  The results of this test were used to:   

 
a) Verify theoretical models 
b) Determine the mode of failure of the structure with and without strengthening  
c) Determine the effect of skewed support on behavior and failure mode 
d) Determine the effect of FRP materials on the elastic response of the strengthened 

structure 
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Deformations, steel strain, and strain in CFRP bars and CFRP sheets were measured at 
different locations.  The maximum load of each cycle was incremented gradually until failure is 
achieved.  After each load cycle, a dynamic load was applied and the dynamic signature was 
recorded.  

 
1.6.2.2. Dynamic Load Testing 
Dynamic test was conducted on the deck strengthened with CFRP sheets.  Dynamic loads 

were induced using a mechanical shaker mounted on top of the deck.  The shaker was placed at 
mid-span along the deck centerline to appreciably energize the fundamental vibration of the 
bridge slab.  Dynamic tests were carried out after each load cycle.  Since the stiffness and 
frequency of the slab varies with the degree of damage, a range of frequencies was applied at 
each stage to achieve resonance of the slab. 

Four accelerometers were deployed at the center point and quarter points along the 
longitudinal and transverse centerlines of the deck.  The results of dynamic tests were used to:   

 
a) Correlate the dynamic signature (i.e., natural frequency and damping ratio) with the 

degree of damage induced by quasi-static loading  
b) Perform a feasibility study of using the dynamic signature technique as a viable 

method to rapidly assess the health condition of RC structures.  
 
1.6.3. Task 3 – Destructive Pier Testing 
Testing of the bridge piers supporting the bridge deck could provide valuable information 

regarding flexural strengthening.  The piers were upgraded to a concrete structure under seismic 
performance category  (SPC) B.   

Three of the four columns were strengthened using different materials and strengthening 
schemes.  The behavior of strengthened columns, influence of different strengthening schemes 
and failure modes were compared and conclusions were drawn.  Flexural strengthening was 
achieved by mounting near-surface mounted CFRP rods on two opposite faces (north and south) 
of the columns.  Two columns were also wrapped with carbon and glass sheets.  The columns 
were tested to failure by applying cyclical lateral loads to the pier cap beams.  

 
1.6.4. Task 4 – Analysis of Results and Development of Analytical Models 
The test results of the various tasks are used to investigate the behavior of the 

strengthened bridge components and verify the predicted capacities and modes of failure.  
Recommendations for strengthening design and seismic upgrade are made.  The concept of using 
dynamic tests to assess structural integrity is investigated and conclusions are drawn. 
 
1.7.   ORGANIZATION OF THE FINAL REPORT 

The final report consists of three volumes.  The current Volume (Volume I) focuses on 
the strengthening and static load testing to failure of the three decks of the bridge.  Volume I also 
includes an introduction to FRP materials and their use and application for structural upgrade, 
general description of the test bridge and bridge rating method, description of the strengthening 
systems and their application procedure.  Theoretical model for flexural strength calculations of 
the strengthened decks are introduced.  Test setup description and the experimental results are 
presented, comparisons of theoretical and experimental results are made, and conclusions are 
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drawn.  Conclusions are also made regarding the effect of FRP strengthening on the stiffness of 
the bridge decks as well as the effect of bridge accessories and boundary conditions. 

Volume II focuses on a feasibility study on damage detection by the dynamic testing.  
The experimental work in the field is backed by laboratory testing for conceptual verification for 
the assessment method.  Test results are presented and compared with theoretical predictions.  
Conclusions regarding the use of dynamic testing for structural assessment are presented.   This 
Volume also includes a summary of the elastic field-testing system as well as the elastic test 
results of the middle deck of the bridge.  Conclusions are made on the effect of bridge 
accessories and boundary conditions on the continuity of deck slabs. 

Volume III focuses on the strengthening and testing to failure of the bridge columns.  The 
strengthening systems and applications procedure are described.  Theoretical models for flexural 
strength calculations are introduced.  The test setup and test procedure are described.  
Experimental data are interpretation, comparison of the experimental and theoretical capacities 
are made, and conclusions are drawn.  
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2. BRIDGE DESCRIPTION, INSPECTION, AND RATING 

 
2.1.  GENERAL 

Bridges may suffer deterioration due to overload and exposure to harsh environment, 
which usually calls for reassessment of the structural components to determine their safe load 
carrying capacity.  Inspection of bridges is performed periodically by state DOTs in accordance 
with the Manual for Maintenance Inspection of Bridges published by the American Association 
of State Highway and Transportation Officials (AASHTO, 1983).  This process includes the 
review of construction drawings, visual inspection, and capacity evaluation using established 
state and federal guidelines.  Any detected deterioration or flaws (e.g., concrete spalling, 
reinforcement corrosion, excessive cracking) is reflected in the calculation of the safe load 
carrying capacity of the bridge.  The determined capacity of the bridge must then meet specific 
load rating criteria to ensure adequate and safe service life.  The rating procedure is available in 
the Bridge Inspection Rating Manual (MoDOT, 1996).  Load rating is the first step in 
determining the need for strengthening.  

 
2.2.   DESCRIPTION OF BRIDGE J857 

Bridge J857 consisted of three simply supported decks made of 18.5 in. (460 mm) thick, 
solid reinforced concrete slabs, as shown in Figures 2.1 through 2.4.  Each deck had an original 
roadway width of 25 feet (7.6 m) and spanned 26 ft (7.9 m).  The original plans of the bridge 
show that the deck slabs had #8 (25 mm) bottom deformed steel bars spaced at 5 in. (127 mm) on 
centers in the longitudinal direction and #4 (13 mm) deformed steel bars spaced at 18 in. (457 
mm) on centers in the transverse direction.  Figure 2.5 illustrates a cross section of the bridge 
deck.  Two abutments and two bents supported the bridge decks.  Each bent consisted of two 
columns connected at the top by a RC cap beam.  The abutments and bents are at a 15-degree 
skew.  The columns had a 2 by 2 ft (0.6 x 0.6 m) square cross-section and were reinforced with 
four #6 (19 mm) deformed steel bars, located at the corners of the cross section.  The transverse 
reinforcement was made of #2 (6 mm) steel ties spaced at 18 in. (457 mm) on centers.  The 
original drawings of the bridge indicated that the clear height (end of haunch to top of footing) of 
the columns varied from 3.5 to 5.0 ft.  Each column was supported by a 4 ft by 4 ft by 2.5 ft (1.2 
m X 1.2 m X 0.75 m) square spread footing.  The reinforced concrete parapet walls were 
approximately 2.5 ft (0.75 m) high and run the entire length of the bridge.  The original drawings 
of the bridge are shown in Appendix A. 

 
2.3.   BRIDGE INSPECTION 

Bridge dimensions were verified through field inspection.  The spacing of the steel 
reinforcement was verified using a bar locator.  Steel reinforcement size and the thickness of the 
concrete cover were verified by exposing some of the rebars.  The bridge deck had an asphalt 
overlay that varied from 0.25 to 0.5 in. (6 to 12 mm).  The asphalt overlay was removed at 
different spots and the deck was inspected.  No deterioration was observed on the deck and the 
deck concrete was fully intact.  According to bridge plans, the height of the columns varied from 
3.5 to 5.0 ft.  Upon field inspection, it was found that the actual heights of the columns varied 
from 6 to 11 ft (1.8-3.4 m).  In addition, while bridge plans indicate that the cap beams were 2 ft 
wide and 2.5 ft deep; it was found that all the cap beams had a 2.5 ft by 2.5 ft square section.  In 
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general, the condition of the bridge was good and no major damage (e.g., corrosion of 
reinforcement, or concrete spalling) was observed.   

The original plans of the bridge J857 did not provide any specifications for the materials 
used in bridge construction other than a concrete mix proportions (1:2:3½) and reinforcement 
schedule.  Since construction of the new road was not completed at the time the research 
program was started, the bridge had to be strengthened while in service.  To avoid damaging the 
bridge, the material properties used in the preliminary analysis were based on the materials 
strength values recommended by MoDOT (MoDOT, 1996), which relate the material properties 
to the age of the structure.  Older bridges are assumed to have lower strength of concrete and 
steel reinforcement than newer bridges.  When the strength of the concrete is not known, 
concrete strength f�c is be taken as 2363 psi (16.3 MPa).  For bridges built in the 1930�s, a 
default value of 33,000 psi (227 MPa) is used for the yield of steel reinforcement.  For 
simplicity, a concrete strength of 2500 psi (17.2 MPa) was used in preliminary calculations.  

 
2.4. BRIDGE DECK FLEXURAL CAPACITY 

The preliminary investigation of bridge capacity was based on a unit strip, simple beam 
analysis.  The geometry of a unit strip of a bridge deck slab and material properties are shown in 
Table 2.1. 

 
Table 2.1.  Slab Unit Strip Properties. 

b 
(in.) 

[mm] 

h 
(in.) 

[mm] 

d 
(in.) 

[mm] 

As 
(in.2) 

[mm2] 

Ec 
(ksi) 

[GPa] 

f�c 
(psi) 

[MPa] 

Es 
(ksi) 

[GPa] 

fy 
(psi) 

[MPa] 
12 

[305] 
18.5 
[470] 

16.5 
[419] 

1.88 
[3980] 

2850 
[19.5] 

2500 
[17.2] 

29,000 
[200] 

33,000 
[227] 

 
 

 

 
Figure 2.1.  Bridge J857 
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Figure 2.2.  Bridge piers. 

 
 
 

 
Figure 2.3.  Detail of deck slab support at the bents.  
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Figure 2.4.  Details of the deck slab support at the abutments. 

 
  The nominal flexural capacity, Mn, of a unit strip can be calculated using the following 

expressions: 
 

�
�

�
�
�

� −=
2
adfAM ysn  (2.1) 

bf85.0
fA

a
c

ys

′
=  (2.2) 

 
The nominal moment capacity of a unit strip was calculated as 79.2 ft-k/ft (352 kN-m/m).  

The ultimate moment Mu should not exceed the design moment capacity φMn: 
 

nu MM φ≤  (2.3) 
 
In which the strength reduction factor φ is equal to 0.9.  Hence, the design moment 

capacity is 71.3 ft-k/ft (317 kN-m/m).  The maximum moment at mid-span due to the weight of 
the bridge, MDL, was calculated to be 22.6 ft-k/ft (101 kN-m/m).  This included the weight of the 
bridge parapet walls and asphalt overlay.  A simple span of 25.5 ft (7.8 m) was used in the 
calculations. 
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Figure 2.5 .  A cross section showing typical details of the bridge deck. 

 Note:  1 ft = 0.305 m, 1 in = 25.4 mm  
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2.5. BRIDGE DECK SHEAR CAPACITY 
According to AASHTO (1996), bridge slabs designed for bending moment in accordance 

with the specifications are considered satisfactory in shear.  Since strengthening with FRP 
bonded to the soffit of the deck cannot improve the deck shear strength, a check must be made to 
ensure that the new loads and test loads would not cause shear failure.  The shear strength of 
concrete Vc is calculated using the American Concrete Institute ACI (1995) approach, as 
follows:  

 
bdf0.2V '

cc =  (2.4) 
 
Considering a concrete strength of 2500 psi (17.2 MPa), a unit width of 12 in. (0.305 m), 

and a depth of reinforcement of 16.5 in. (0.411 m), the shear strength is 19.8 kips/ft (289 kN/m).  
The one�way action shear capacity of the deck is determined by multiplying this value by the 
bridge width of 25 ft (7.6 m).  The one�way action shear capacity of the deck is therefore 495 
kips (2202 kN). 

A check for the two-way action was also made to ensure that the deck would not fail in 
punching shear due to concentrated load of truck wheels or hydraulic jacks.  For this case, the 
critical section is perpendicular to the plane of the slab and is located at a distance d/2 from the 
perimeter of the concentrated load.  Using a load footprint of 12 in. X 12 in. (300 mm X 300 
mm), the shear capacity was calculated to be 188 kips (837 kN).  The actual shear capacity of the 
deck based on one-way and two-way action is higher that the calculated values because the 
concrete strength was expected to be higher than 2500 psi (17.2 MPa).  As will be shown later, 
the maximum load to be applied by the jacks (approximately 440 kips) and the load applied by 
each jack or an HS-20 modified truck wheel is less than the shear strength calculated from the 
one-way and two-way shear action, respectively.  Therefore, the bridge decks had adequate shear 
capacity.    

 
2.6.   BRIDGE RATING 

The results of bridge deck rating are influenced by proper identification of material 
properties and incorporation of its actual boundary conditions.  When the material properties are 
not known, the rating is typically achieved using recommended material properties based on the 
age of the bridge, which in most cases results in a conservative rating.  Since the rating of a 
bridge is ultimately linked to its decommission, careful consideration should be given to the 
factors that can unnecessarily cut short the service load/life of the bridge.   

In Missouri, bridges built, rehabilitated, or reevaluated are rated using the Load Factor 
Rating Method.  Bridges are rated at two load levels, the maximum load level, called the 
Operating Rating, and a lower load level, called the Inventory Rating (MoDOT, 1996).  The 
Operating Rating is the maximum permissible live load that should be allowed on the bridge.  
Exceeding this level could damage the bridge.  Allowing unlimited number of vehicles to use the 
bridge at operating level may shorten the life of the bridge.  The Inventory Rating corresponds to 
the customary design level of stresses, but reflects the existing bridge and material conditions 
with regard to deterioration and loss of section.  It results in a live load that the bridge can carry 
safely on a daily basis without damaging the bridge.  

In Missouri, the Operating Rating is based on the appropriate ultimate strength using 
AASHTO specifications.  The vehicle used for the live load calculations is the HS20 truck or the 
equivalent MS18 truck if a metric load rating is desired.  
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In Missouri, load posting is established using the H20 and 3S2 vehicles at 86% of the 
Operating Rating.  Additionally, the Operating Rating is calculated for the MO5, HS20 and the 
4S3P vehicles.  Typical axle loads and spacing for the various rating vehicles are shown in 
Figures 2.6 through 2.10. 

 
2.6.1. Live Load Distribution Factors.   
Two live load distribution factors are considered in bridge rating: AASHTO two-lane live 

load distribution factor and MoDOT one-lane live load distribution factor. 
 

2.6.1.1. Two-Lane Live Load Distribution Factor.   
This factor is determined in accordance with AASHTO Standard Specifications for 

Highway Bridges (AASHTO, 1996).  The effective deck strip width for a wheel load is 
determined as follows:  

 
( ) ft0.7S06.04E ≤+=  (2.5) 

 
In which S is the span length in feet.  For the bridge under investigation this formula 

yields 5.53 ft (1.7 m).  The two-lane live load distribution factor is the inverse of the effective 
strip width and is determined as follows: 

 
1808.053.5

1
E

1LLDF LANE2 ===  (2.6) 
 

2.6.1.2. One-Lane Live Load Distribution Factor.   
The live load distribution factor for one-lane loading on slab-type structures is calculated 

by assuming that the two wheel loads are distributed over the roadway width, which should not 
exceed 24 ft (7.3 m).  This is expressed as follows: 

 

LLDF
Wheel Lines

Roadway WidthLANE1

2
=  (2.7) 

 
Substituting the 22 ft (6.7 m) roadway width results in the one-lane distribution factor. 

 

0909.0
22
2LLDF LANE1 ==  (2.8) 

 
2.6.2. Load Factor Bridge Rating 
The load factor rating is achieved using the following expression:  

 

)WeightTruck(
AM

M3.1MRating
)ILL(

DLn
LF ×−φ=

+

 (2.9) 

 
Where A is a load factor taken as 2.17 for Inventory Rating and 1.3 for Operating and Posting 
Rating.  The design moment capacity φMn of the deck was previously determined as 71.3 ft-k/ft 
(317 kN-m/m) and the moment due to the self-weight of the deck as 22.6 ft-k/ft (89 kN-m/m).  
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Figure 2.6.  Truck HS20 

Figure 2.7.  Truck 3S2 
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Figure 2.8.  Truck 4S3P 

 
 

 
Figure 2.9.  Truck MO5 

 
 

 
Figure 2.10.  Truck H20 
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 The moment capacity available for live load plus 30% impact is the difference of the 
dead load moment and the total moment capacity, taking into account the incorporation of the 
loading factor as follows: 

  
Table 2.2.  Available Capacity for Live Load plus Impact/Foot Width. 

Truck Rating Level Formula M(LL+I) (ft-k) 

HS20 Inventory 17.2
M3.1M DLn −φ  19.32 

MO5 Operating 3.1
M3.1M DLn −φ  32.25 

HS20 Operating 3.1
M3.1M DLn −φ  32.25 

4S3P Operating 3.1
M3.1M DLn −φ  32.25 

3S2 Posting 3.1
M3.1M86.0 DLn −φ

×  27.74 

H20 Posting 3.1
M3.1M86.0 DLn −φ

×  27.74 
 
The maximum live load moment induced by the wheel loading of the standard vehicles is 

calculated using the influence line for moment at center span.  To calculate the two-lane and one-
lane induced live load moments for a unit strip, the determined live load moments are multiplied 
by LLDF2LANE and LLDF1LANE, respectively.  The maximum unit strip live load moments for the 
standard trucks are therefore: 

 
Table 2.3.  Two Lane and One-Lane Live Load Calculations/Foot Width.  

M(LL+I) (ft-k) Truck 
Type Two-Lane One-Lane
HS20 25.3 12.7 
MO5 28.7 14.4 
HS20 25.3 12.7 
4S3P 35.6 17.9 
3S2 20.5 10.3 
H20 20.7 10.4 

 
Load factors are determined by dividing the available live load capacities given in Table 

2.2 by the required live load capacities given in Table 2.3.  The results of load factor ratings are 
tabulated in Table 2.4. 

An Inventory Rating factor greater than 1.0 indicates that the live load capacity is greater 
than the applied live load and vice-a-versa.  The two-lane inventory rating for the HS20 truck 
indicated that the bridge was deficient in terms of ultimate capacity.  No posting was needed for 
bridge J857.  
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Table 2.4.  Load Factor Bridge Rating 

Load Factors Safe Load Capacity 
(Tons) Truck 

Type 

Truck 
Weight 
(Tons) 

Rating Type 
Two-Lane One-Lane Two-Lane One-Lane 

HS20 36.00 Inventory 0.764 1.521 24.7 49.3 
MO5 36.64 1.124 2.240 41.2 82.1 
HS20 36.00 1.275 2.539 45.9 91.4 
4S3P 60.00 

Operating 
0.906 1.802 54.4 108.1 

3S2 36.64 Operating 1.353 2.693 49.6 98.7 
H20 20.00 Operating 1.340 2.667 26.8 53.3 

Note:  1 Ton = 2 kips = 0.906 kN 
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3. STRENGTHENING DESIGN AND APPLICATION 

 
3.1.  GENERAL 

Bridge rating results indicated that bridge J857 did not need strengthening to meet 
posting requirements.  According to MoDOT specifications, all new bridges on the national 
highway systems and in commercial zones should be designed for HS20 Modified loading.  An 
HS20 Modified loading is defined as HS20 loading modified by a factor of 1.25.  These 
requirements were used to establish an appropriate strengthening level that reflects a 
strengthening significance and takes into account the feasibility of testing to failure.  

 
3.2.  PRELIMINARY INVESTIGATION 

The design of reinforced concrete members, as set by AASHTO, is made either with 
reference to service loads and allowable stresses, which is known as Service Load Design, or 
with reference to load factors and limit state strength, which is known as Strength Design 
(AASHTO, 1996).  The latter was used for preliminary investigation.   

According to the strength design method, the factored moment is as follows: 
 

)M67.1M(3.1M )IL(DLu ++=  (3.1) 
 
The flexural capacity calculation was based on the unit strip method adopted by 

AASHTO for design and analysis of solid concrete slab bridges (AASHTO, 1996).  Considering 
simple supports and an impact factor of 1.3, the maximum live load moment induced by an HS20 
wheel loading is 140 ft-k/ft (623 kN-m/m).  The maximum live load moment induced by an 
HS20 modified wheel loading is determined by multiplying this value by 1.25, which yields 175 
ft-k/ft (779 kN-m/m).  These moments are acting on a deck strip with an effective width of E, 
defined by AASHTO as follows: 

 
( )S06.04E +=  (3.2) 

 
In which S is the span of the slab taken as 25.5 ft (7.8 m).  The value of E should not 

exceed 7.0 ft (2.1 m).  Hence, the effective strip width is E = 5.53 ft (1.7 m).  The maximum live 
moment per linear foot is determined by diving the maximum moment by 5.53 ft (1.7 m), which 
yield 25.3 ft-k/ft (112.5 kN-m/m) and 31.6 ft-k/k (140.6 kN-m/m) for HS20 and HS20 Modified 
loading, respectively.  The corresponding factored moments are 84.3 ft-k/ft (374 kN-m/m) and 
98.0 ft-k/ft (436 kN-m/m), respectively. 

The factored moments should not exceed the design moment capacity, which is expressed 
as follows: 

 
 un MM ≥φ  (3.3) 

 
In which, the strength reduction factor φ is equal to 0.9.  In order for the bridge to carry an 

HS20 or HS20 modified truck, its nominal moment capacity should not be less than 93.7 ft-k/ft 
(417 kN-m/m) or 108.9 ft-k/ft (484 kN-m/m), respectively.  Comparing these values with the 



 

 

19

deck capacity of 79.2 ft-k/ft (352 kN-m/m), the required levels of strengthening are established 
as 18% and 37%.  A capacity increase of 18% may not provide a clear differentiation between 
the flexural behaviors of the strengthened and unstrengthened decks.  A 37% strengthening, on 
the other hand, required a more complex test setup to achieve failure loads.  Accordingly, it was 
decided to strengthen the decks by approximately 30% to improve their flexural capacity.  This 
level of strengthening was considered to be sufficient to meet HS20 Modified truck loading 
requirement based on the belief that the assumed material properties were overly conservative.  
 
3.3.  STRENGTHENING SYSTEMS 

Two of the three decks of the bridge were to be strengthened to the same level of nominal 
capacity using two different FRP systems: near surface mounted (NSM) FRP rods and MBraceTM 
Composite Strengthening System.  Conceptually, FRP strengthening systems are similar to 
bonding steel plates to concrete system.  However, due to their light weight, the installation of an 
FRP strengthening system is easier than bonding steel plates and does not require the use of 
heavy equipment and is usually achieved with minimal installation time.   

 
3.3.1. Near-Surface Mounted FRP Rods.   
This strengthening system consists of FRP rods embedded in surface grooves and bonded 

in place using an epoxy adhesive.  The rods considered for this application were 7/16 in. (11 mm) 
diameter, CFRP rods, with surface roughened by sandblasting to improve their bond properties.  
The physical properties of the CFRP rods are given in Table 3.1.  The binder was LPL 
concessive paste, a two-component, 100% solids, epoxy adhesive, manufactured by Master 
Builders Technologies, Cleveland, OH.  The high viscosity of this binder facilitated the over-
head application of the rods.  A cross section illustrating details of the final product is shown in 
Figure 3.1.   

 
Table 3.1.  Mechanical Properties of Carbon FRP Rods. 

Diameter 
in (mm) 

Design Strength 
ksi (MPa) 

Design Strain 
in/in or mm/mm 

Tensile Modulus 
ksi (GPa) 

7/16 (11) 144 (992) 0.0105 17,200 (119) 
 
 

Epoxy Paste FRP Rod Groove
 

Figure 3.1.  Cross section showing NSM details. 
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3.3.2. MBrace Composite Strengthening System.   
This composite system is manufactured by Master Builders Technologies, Inc., 

Cleveland, OH.  The system consisted of four basic components, CF-130 unidirectional carbon 
fiber sheets and three, two-component, resins that when combined, form an FRP laminate.  The 
fibers are bonded using the three epoxy-based resins known as primer, putty filler, and saturant 
resin.  The mechanical properties of the carbon fiber sheets are given in Table 3.2.  The 
components of MBrace strengthening system are illustrated in Figure 3.2.  The primer is applied 
to improve the bond of the composite system to the base concrete by penetrating the pores of the 
concrete.  The putty is a thick, paste-like epoxy used to fill bug holes, surface defects, and level 
uneven spots.  

 
  Table 3.2.  Mechanical Properties of MBrace CF 130 Carbon Fiber Reinforcement. 

Thickness 
in (mm) 

Design 
Strength ksi 

(MPa) 

Design Strain 
in/in or 
mm/mm 

Tensile 
Modulus ksi 

(GPa) 
 0.0065 
(0.165) 

550  
(3800) 0.017 33,000  

(228) 
     
 

 
Figure 3.2.  Components of the MBrace FRP composite strengthening system. 

 
Quality bond between the composite system and concrete is crucial for the effectiveness 

of the system.  If the FRP follows the contour of the irregular concrete surface, the curvature of 
the laminate may initiate pull-off forces, creating a localized delamination and jeopardizing the 
strength of the system.  Bridging over formwork marks may result in stress concentration and 
cause the fibers to rupture at load levels lower than anticipated in the design.  

 
3.4.  STRENGTHENING DESIGN 

The design of strengthening with surface bonded FRP composites is described in detail in 
Chapter 6.  To avoid repetition, detailed calculations will not be given here, but a summary of the 
design approach is provided. 

The design of FRP strengthening may involve many unknowns.  The stresses in each of 
the materials at failure will depend on the strain distribution and the governing failure mode.  
Because of the number of variables involved, there is no closed form solution to determine the 
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flexural capacity failure mode directly.  Strengthening design is based on iterative procedure in 
which the amount of added FRP is varied and the section capacity is calculated.  This process is 
continued until the desired nominal moment capacity is achieved.  Iteration to determine FRP 
amount is made simple by setting up a spreadsheet or by using any software for numerical 
calculations.     

The first step in strengthening design is to estimate the required amount of FRP 
reinforcement.  This could be estimated from the additional tensile force, T, needed to upgrade 
the moment capacity.   

 

d90.0
MM

T nstr,n

⋅
−

=  (3.4) 

 
In which Mn,str is the desired nominal moment capacity calculated as follows: 
 

φ
= u

str,n
MM  (3.5) 

 
The initial cross-sectional area of FRP, Af, is then determined as follows: 

 

fu
f fR

TA
⋅

=  (3.6) 

 
Where R is a reduction factor that accounts for the novelty of the strengthening system.  

There is no predetermined value for R.  Its value is used at the discretion of the designing 
engineer and may vary for the different FRP strengthening systems.  Since an objective of this 
research program was to verify FRP strengthening design methodology, this factor was taken as 
1.0.   

The iterative strengthening design approach was carried out using this initial amount of 
FRP reinforcement.  FRP amount was varied until the desired capacity was achieved.  Based on 
this approach, the design called for 0.042 in2/ft (89 mm2/m) of CFRP sheets and 0.12 in2/ft (254 
mm2/m) of CFRP NSM rods.  Summaries of the strengthening design are given in Appendix B.  
Based on this, the equivalent width of CFRP sheet per unit strip, wf, is determined as follows: 

 

f

f
f tn

A
w

⋅
=  (3.7) 

 
In which n is the number of CFRP plies and tf is the thickness of each ply.  The spacing 

of the NSM rods, Snsm, is determined as follows: 
 

s
n,f

rod
nsm W.

A
A

S =  (3.8) 

 
In which Arod is the cross-sectional area of one NSM rod and Af,n is the required amount 

of NSM FRP.  The results of the strengthening design are given in Table 3.3. 



 

 

22

Table 3.3.  Summary of Decks Strengthening Design Calculations. 
 εcc β1 α1 c εf ff εs fs Mn 

NSM 0.00214 0.818 0.915 3.53 0.00837 143.9 0.00787 33.0 102 
Sheets 0.003 0.833 0.900 3.51 0.01240 409.3 0.01162 33.0 102 

 
According to these calculations, the design called for eight, 20-in (500 mm) wide, single-

ply CFRP strips on the deck soffit, which produced a capacity of 102 ft-k/ft (453 kN-m/m) and 
failure governed by concrete crushing.  Similarly, the required number of near-surface mounted 
reinforcement was determined to be 20 rods spaced at 15 in. (375 mm), which produce a capacity 
of 102.5 ft-k/ft (456 kN-m/m) and a mode of failure governed by the rupture of FRP rods.  
Summary of the flexural capacity requirements for the bridge decks and strengthened capacity is 
given in Table 3.4.  The required amounts of FRP required for deck strengthening are given in 
Table 3.5.  The strengthening schemes of the bridge decks are shown in Figure 3.3. 

 
3.5.  INSTALLATION OF THE NSM CFRP RODS 

The required number of near-surface mounted rods to strengthen the west deck of the 
bridge (deck 1) was determined to be 20, 7/16 in. (11 mm) diameter, CFRP rods spaced at 15 in. 
(375 mm). The FRP rods were staggered such that at least 50% of the area of FRP reinforcement 
extended to the support, as shown in Figure 3.4.  The rods were embedded in 20 ft (6.6 m) long, 
¾ in. (19 mm) deep, and 9/16 in. (14 mm) wide grooves cut onto the soffit of the bridge deck 
parallel to its longitudinal axis.  Groove dimensions were chosen based on the previous 
experience of the research team.  

The NSM rods were installed in grooves made by making two parallel saw cuts on the 
concrete surface using hand-held grinders with a diamond tip masonry cutting wheels.  The two 
cuts were spaced at a distance equal to the desired groove width.  The concrete in between the 
two cuts was then chipped off, thus creating the groove. 

 
Table 3.4.  Current and Upgraded Flexural Capacity in ft-k/ft of a Typical Bridge Deck. 

Induced Live Moment 
Plus Impact   

ft-k/ft (kN-m/m) 

Required Nominal 
Capacity  ft-k/ft  

(kN-m/m) 

Dead 
Moment 

ft-k/ft 
(kN-
m/m) HS20 HS20 

Mod. HS20 HS20 Mod. 

Current 
Nominal 
Capacity   

ft-k/ft 
(kN-
m/m) 

Upgraded 
Capacity  

ft-k/ft  
(kN-m/m) 

22.6 
 (100) 

25.3 
(113) 

31.6 
 (141) 

93.7 
(417) 

108.9  
(484) 

79.2 
(352) 

102  
(458) 

Required Strengthening  18% 37% N/A 30 % 
 

Table 3.5.  Required Materials for the Strengthening of Bridge Deck. 

Strengthening Material Design Requirement Quantity Linear 
ft (m) 

7/16� φ − CFRP rods 20�-0� long CFRP rods @ 15� o.c. 20 rods 400 (122) 
20� wide - CF-130 
sheets 22�-6� long, single ply @ 37.5� o.c. 8 sheets 180 (55) 
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Near-surface 
mounted CFRP rods 

Externally bonded CFRP 
sheets 

Figure 3.3. Bridge deck strengthening schemes. 

Unstrengthend 

 Deck 1 (West)  Deck 3 (East) Deck 2 

 
 

22�-6� 

26�-6�

2�-6�                  17�-6�                      

Figure 3.4.    Deck strengthened with NSM CFRP rods. 

2�-6�

 
 
Grooves were cleaned using sandblasting to remove all loose particles and dust.  To 

apply the NSM rod, each groove was initially filled half way with a high viscosity epoxy 
adhesive compatible with the FRP systems.  An FRP rod was then placed into the groove and 
lightly pressed in place.  This action forced the adhesive to flow around the rod and cover the 
sides of the groove.  The FRP rods were held in place using wooden wedges at an appropriate 
spacing.  The grooves were then filled with the same adhesive and the surface was leveled.  
Photos showing the installation of the NSM rods are shown in Figures 3.5 through 3.8. 
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Figure 3.5.  Installing the CFRP rods after filling the grooves halfway with epoxy paste. 
 
 

 
 

 
Figure 3.6.  Filling the groove with epoxy paste after installing the CFRP rods.    
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CFRP rod

 
Figure 3.7.  FRP rods before applying the second layer of paste. 

 
 
 
 

 
Figure 3.8.  Deck 1 after strengthening with NSM rods. 
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3.6. INSTALLATION OF CFRP SHEETS 
The middle deck of the bridge (deck 2) was strengthened with eight, 20-in (500-mm) 

wide, single-ply, CFRP sheets.  The sheets were spaced at 37.5 in. (950 mm) on centers with a 
clear distance of 17.5 in. (444 mm) in-between and ran the entire length of the slab, as shown in 
Figure 3.9.  The FRP sheets were applied in accordance with the specifications of the composite 
system manufacturer (MBT, 1998).  A certified specialty contractor applied the FRP 
strengthening system. 

Prior to applying the FRP, existing form lines on the deck soffit from the original 
construction were ground smooth with hand grinders and the entire slab was lightly sandblasted 
to remove any loose material and laitance; and to provide an open pore structure.  The primer 
was applied to the concrete area to receive FRP using a nap roller and was allowed to cure for 
approximately two hours.  The putty was applied using a trowel.  Immediately after the putty was 
applied, the first coat of saturant was applied over the entire area to receive the FRP using a 
roller.  A strip of CFRP was then measured, cut, and applied on top of the saturant similar to 
wallpaper.  One end of the FRP sheet was first placed on the slab and pressed into the saturant 
and the sheet was gradually attached by pressing it into the saturant.  The sheet was pressed 
again using a �bubble roller� to eliminates the entrapped air between the fibers and resin and 
ensures the full impregnation of the FRP sheet with resin.  The second and final layer of 
impregnating resin was then applied and the system was pressed with a bubble roller once again.  
After allowing the system to cure, the bonded laminates were inspected for voids and spots of 
delamination (none was detected).  An additional, 5 ft (1.5 m) long, sheet of CFRP was attached 
to the side of the cap beam for pull-off bond strength tests, as shown in Figure 3.10. 

 
 

22�-6� 

26�-6� 

 
 

Figure 3.9.  Deck strengthening with FRP sheets. 
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Figure 3.10.  Deck 2 after strengthening with CFRP sheets. 

 
 

3.7. BOND OF CFRP SHEETS 
In total, six pull-off tests were conducted on the CFRP sheets.  Four tests were conducted 

before testing deck 2 to failure.  The tests were conducted on the additional CFRP sheet that was 
bonded to the side of a cap beam.  Locations of the four tests are shown in Figure 3.11.  Two 
additional tests were conducted after testing deck 2.  The two tests were done on one of the 
sheets bonded to the bridge deck at locations closer to the end of a sheet, where no damage due 
to testing was detected, as shown in Figure 3.12.   

Tests were conducted in accordance with the recommended test methods for direct 
tension pull-off tests of surface bonded sheets (Benmokrane et al., 1999).   

The load was applied using the apparatus shown in Figure 3.13.  The loading apparatus 
has an adhesion fixture with a 2-in2 (1290 mm2) flat surface on one end and can be screwed to 
the loading apparatus on the other end.  A 3000-psi (20.7-MPa), 5-minute, bonding agent was 
used to bond the adhesion fixtures to the FRP sheet.  The maximum pull-off load is obtained 
from a force indicator.  The surface of the FRP sheet was cleaned using medium grid sandpaper, 
after which the surface was wiped with a dry and clean cloth.  An adhesion fixture was bonded to 
the surface of the FRP and allowed to cure for 30 minutes.  A core drill, with 2-in. diameter on 
the inside, was used to cut through the FRP and the substrate concrete to a depth of about 0.25 in. 
into the concrete.  Figure 3.14 shows a close up of a prepared adhesion fixture.  The loading 
apparatus was then attached to the adhesion fixture, force indicator set to zero, and load was 
applied until the fixture was pulled off.  The pull-off strength was computed by dividing the 
maximum indicated load by the surface area of the adhesion fixture.  



 

 

28

According to the recommendations, the preferred mode of failure is a tension failure 
within the surface concrete at a stress level in excess of 200 psi (1.38 MPa).  The pull-off 
strength of the six tests varied from 200 to 1050 psi (1.38 to 7.23 MPa) with an average of 632 
psi (4.35 MPa).  Test #2 was the only test in which failure occurred in the concrete.  The pull-off 
strength from this test was 386 psi (2.66 MPa).  The failure in all other tests occurred at the 
adhesion fixture/ FRP interface (bond failure).  

 
 

 
Figure 3.11.  Locations of the pull-off tests conducted on the cap beam 

 
 

 
Figure 3.12.  Locations of the pull-off tests conducted on bridge deck. 
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Figure 3.13.  Adhesion fixture bonded to the FRP sheet. 

 
 
 

 

 
Figure 3.14.  Loading apparatus attached to the fixture. 
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4. TEST SET UP AND INSTRUMENTATION 

 
4.1. GENERAL 

Preliminary analysis of the simply supported bridge decks indicated that the total life load 
capacity was 402 kips (1788 kN).  This capacity was based on assumed concrete strength of 2500 
psi (17.2 MPa) and steel yield strength of 33,000 psi (227 MPa).  To account for higher material 
strengths, uncertainties related to support conditions (e.g., existence of some fixity), and the 
additional load requirement due to strengthening, the loading system was designed to produce a 
total external load of 800 kips (3558 kN).  This level of loading was applied by means of hydraulic 
jacks.   

Different loading/reaction configurations were investigated including the driving of small 
piles under the decks to provide the loading reaction.  Due to the low clearance under the bridge, 
which was as low as 7.5 ft (2.3 m), most of these configurations were ruled out because it was not 
possible to operate heavy machinery under the bridge.  A decision was finally made to construct a 
steel reaction frame consisting of steel girders and spreader beams to create a closed loop test 
setup.  A closed-loop configuration ensured that only the decks were loaded and that the cap beams 
and the piers were not carrying any load other than their self-weight and the weight of the decks 
and the loading system.  

  
4.2. LOADING CONFIGURATION 

Figure 4.1 illustrates a plan of the test setup for the middle deck (deck 2).  This 
configuration was also used to test decks 1 and 3 with simple modification to produce the end 
reaction at the abutment.  The loading system comprised of an electric pump, four hydraulic 
jacks, and control valves.  Hoses connected the jacks in parallel so that equal pressure was 
achieved in the jacks. 

The four hydraulic jacks rested on the bridge deck on a skew line at mid-span, parallel to 
the skewed bents of the bridge.  The jacks were spaced four feet (1.2 m) apart.  The two jacks on 
the outside were approximately seven feet (2.1 m) from the edge of the deck slab, as seen in 
Figure 4.2.  Locations of the hydraulic jacks on the decks are shown in Figure 4.3.  Each jack 
had a 200 kips (890 kN) capacity and 18 in. (457 mm) stroke.  Prior to placing the jacks, four 
two-inch (50-mm) diameter cores were drilled at their intended locations.  The jacks were then 
placed and commercially available, high strength steel rods were dropped through the jacks and 
the holes.  Dywidag-Systems International, Bolingbrook, IL, manufactures the rods used in this 
application.  The Dywidag rods were made of grade 150-ksi (1033-MPa) steel and had a 
diameter of 13/8 in. (35 mm).  Dywidag rods are patented threaded rods that come with 
accessories, such as high strength plates and nuts, which made them very suitable for this test.  
The rods were used to transfer the load from the jacks to the reaction system, as shown in Figure 
4.2.  The jacks pulled against two steel spreader beams located under the deck.  Each spreader 
beam was made of two standard W14 x 90 steel shapes (see Figure 4.2).  Steel strips were used 
to join the two W14 x 90 shapes together through welding to form one spreader beam.  A 
clearance of two inches (50-mm) was provided between the two shapes to allow for a Dywidag 
rod to go through the spreader beam.  Details of the spreader beam are shown in Figure 4.4.   
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Spreader Beam 

26�
13�

6�

4�

2�
7�-9� 

28�-6�

25� 

2W14 Η   90 2W36 Η   150

 
 

Note: 1ft = 0.305 m, 1 in. = 25.4 mm 
Figure 4.1.  Test setup plan for the middle deck showing points of load application. 
 
 
 

2W14 × 90
Spreader

2W36 × 150
Steel Girder

2C7 × 9.8

Hydraulic
Jack

26�-3�

2�-6�

1�-6�

2�-6�

6�
18.5�

13�-1/2�4�

Deck

Cap beam

Footing

Pier

High Strength
Dywidag
Rods

 
Note: 1ft = 0.305 m, 1 in. = 25.4 mm 

Figure 4.2.  Section at the middle deck showing details of the loading apparatus. 
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(a) Jack locations on deck 2 

 
 
 

 
(b) Jack locations on deck 3 

 
Figure 4.3.  Location of the hydraulic jacks on the bridge deck. 
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(a) Cross-section of a spreader beam 

0.440� 
0.710�   

3�   
0.25�   

22.5� 

16.5� 

14�   
2� 

3� 

3�

6�

0.25�

Stiffeners W 14 x 90

1.5� 1�- 3�

2�

(b) Side view of a spreader beam 

Figure 4.4.  Details of a spreader beam. 

W 14 x 90   

  
 
To avoid damage of the spreader beam, a distribution beam made of two back-to-back C7 

x 9.8 standard steel channels were used to distribute the load across the width of a spreader 
beam, as shown in Figure 4.5.  Each spreader beam transferred the load to a steel girder made of 
two W36 x 150 standard steel shapes.  Welded steel strips were used to join the two shapes 
together to form the girder.  Two inches (50-mm) of clearance was provided between the two 
steel shapes to allow for a Dywidag rod to go through the girder when needed.  Each girder 
reacted against the cap beams (see Figures 4.1 and 4.2).  Details of a girder are shown in Figure 
4.6.  A local contractor assembled the test setup components mentioned above, as shown in 
Figure 4.7.  Figure 4.8 shows the unloading of the test setup components at the bridge site.    

The loading system described above reacted against the cap beams.  To provide the 
reaction at the abutments, two rectangular cuts were made on each abutment to accommodate the 
ends of the girders.  The upper edge of each cut was aligned with the bottom of the cap beams to 
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ensure levelness of the girders.  Once the saw cuts were made, an attempt was made to remove 
the concrete using a jackhammer, as shown in Figure 4.9.   

To facilitate this operation, the soil behind the abutment walls was excavated with a 
backhoe, as shown in Figure 4.10.  This provided the advantage of extra workspace for the 
construction workers to jackhammer the concrete on both sides of the abutment.  Figure 4.11 
shows this process. 

Each of the girders weighed about 8,200 lb (36.4 kN), and with the low clearance of the 
bridge, it was not possible to use a forklift to move them around (see Figure 4.12).  The girders 
were dragged under the bridge by chaining them to a backhoe.  A chain was then dropped 
through the holes made on the deck, hooked to the girder, and used to lift it using the backhoe.  
To avoid overloading the deck prior to the initiation of the destructive testing, the backhoe lifted 
the girders from a location next to the bridge.  Once the girders were lifted, wooden blocks were 
stacked under their ends to seat them.  The rest of the loading system was then assembled.  
Figure 4.13 shows the assembled setup for an end span showing the end of a girder resting in the 
cuts made in the abutment.  Similarly, Figure 4.14 shows the assembled tests setup for the 
middle deck. 

 
 

(a) Cross-section of a distribution beam

S C 9 

(b) Side view of a distribution beam

Figure 4.5.  Details of a distribution beam. 
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0.625� 

1� 

3� 

26�

20�

36� 

W 36 x 150 

Stiffener 

2�

4� 2�-3� 4� 

4� 
28.5�

4� 

0.75�

StiffenersW 36 x 150 

(a) Cross section of a girder

(b) Side vie of a girder 

Figure 4.6.  Details of a steel girder. 
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Figure 4.7.  Manufacturing the steel girders. 

 
 
 
 

 
Figure 4.8.  Unloading the test setup components at the bridge site. 
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Figure 4.9.  Cutting the bridge abutment. 

 
 
 
 

 
Figure 4.10.  Excavating behind the bridge abutment. 
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Figure 4.11.  Bridge abutment after excavation and cutting. 

 
 
 

 
Figure 4.12.  Installation of the steel girders. 
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Figure 4.13.  Assembled test setup for an end deck. 

 

 

 
Figure 4.14.  Assembled test setup for the middle deck (deck 2). 
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4.3.  DECK PREPARATION FOR TESTING 
The original plans of the bridge indicated that shear keys existed between the deck and 

the cap beam at the two bents of the bridge.  However, field inspection of the bridge showed that 
shear keys were not implemented during construction.   

To minimize the influence of deck end fixity on the behavior of the decks, the joints 
between deck slabs were saw cut to remove filler material.  In addition, the parapet walls were 
saw cut at five feet (1.5 m) intervals to minimize their contribution to the stiffness of the decks.  
The saw cuts created gaps that were approximately ¼ in. (6 mm) wide.  However, upon testing 
of deck 1, it was found that these narrow cuts were not sufficient to eliminate the contribution of 
the parapet walls.  Therefore, prior to testing decks 2 and 3, the cuts were enlarged using a 
jackhammer.  Photographs showing the cutting of the decks joints and the parapet walls are 
given in Figures 4.15 and 4.16. 

  
4.4. INSTRUMENTATION 

An objective of the research program was to evaluate the flexural behavior of the decks.  
Instrumentation was required to permit reliable correlation between the analytically predicted 
and the measured responses of the bridge.  Instrumentation for bridge decks testing included 
strain gages to measure reinforcement strains, Linear Variable Differential Transformers 
(LVDTs) to measure deflections and a load cell to measure the applied load.  

 
4.4.1. Strain Measurement.   
Strain measurements were achieved using foil strain gages manufactured by Vishay 

Measurement Group, Inc., Raleigh, North Carolina.  The strain gages were attached to the steel 
and FRP reinforcement.  Figure 4.17 shows the layout of the strain gages on the three decks.  
The numbers of strain gages for steel reinforcement used on decks 1, 2, and 3 were 6, 15, and 19, 
respectively.  The numbers of strain gages for FRP reinforcement used on respective decks were 
13, 15, and 0.  To attach the strain gages to the steel reinforcement, the concrete cover was 
chipped away at the predetermined locations and the steel reinforcement was exposed.  The 
surface of the steel bars was smooth polished using a high-speed rotary tool.  The strain gages 
were bonded such that they measured the longitudinal strain of the reinforcement.  After the 
application of the strain gages, they were coated using a product supplied by the manufacture to 
provide them with environmental and mechanical protection.  The coating consisted of a layer of 
butyl rubber sealant and layer of neoprene rubber sheet.  For the deck to receive CFRP sheets the 
voids at the exposed steel bars were filled with epoxy paste and the surface of the concrete was 
leveled.  Strain gages were also installed on the CFRP sheets after they were bonded to the deck 
soffit and allowed to cure.  Strain gages were attached to the CFRP rods prior to their installation 
of the bridge deck.  

 
4.4.2. Deflection Measurements.   
Ten LVDTs were used to measure the deflection of each deck.  The LVDTs were 

arranged along two lines parallel to the axis of the bridge, five LVDTs on each line.  LVDT lines 
were at mid-width and quarter-width of each deck.  Placement details and spacing of the LVDTs 
are shown in Figure 4.18.  To avoid any possible instrument damage and testing delays caused 
by possible flooding of the creek, the LVDTs were mounted on two steel beams that spanned the 
bridge deck, as shown in Figure 4.19.  Each beam was made of a 23 ft-4 in. (7.1 m) long, C8 x 
11.5, standard steel channel. 
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Figure 4.15.  Cutting bridge deck joints. 

 
 
 

 
Figure 4.16.  Cutting bridge parapet walls. 
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4.4.3. Load Measurement.   
The load measurement was achieved using a 200-kips (90-Ton) capacity load cell.  The 

load cell had a donut shape with a hollow core.  It was placed between the hydraulic jack and the 
plate and nut on the Dywidag rod. 

 
4.4.4. Data Acquisition.   
Data was acquired using the data acquisition recreational vehicle developed at the 

University of Missouri-Columbia.  The vehicle houses two computers with five connection 
boxes.  Each box can accommodate 19 strain gages and 5 LVDT connections.  Since only 19 
strain gage were used for deck 1 and 3, only one box was needed to acquire the data.  Deck 2, 
however, had a total of 30 strain gages and more than one box needed to be used.  Lists of the 
strain gages used on each deck and the associated channel number on the box are listed in Figure 
4.22. 
 
 
 

Strain gage on FRP rod Strain gage on steel and FRP sheet Strain gage on steel reinforcement
 

 
Figure 4.17.  Location of strain gages on steel and FRP reinforcement. 

 
 

Deck 1   Deck 2                         Deck 3  
 

Figure 4.18.  Location of the LVDTs on the bridge decks. 
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Figure 4.19.  Support of the holder beam. 

 
 

 

 
Figure 4.20.  LVDTs attachment. 
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Figure 4.21.  Details of the support for the holder beam for the LVDTs. 
 

 
 



 

 

46

4.5.  LOAD TEST PROTOCOL 
The three decks of the bridge were tested to failure by applying quasi-static load cycles.  

Prior to testing, the LVDTs were adjusted, as shown in Figure 4.23.  Unfortunately, it was found 
that some of the strain gages had failed due to exposure to the harsh environment for over six 
months.  The transverse beams were leveled manually by tightening the nuts of the Dywidag 
rods above the hydraulic jacks, as shown in Figure 4.24.  Data acquisition was then initiated and 
the steel girders were raised until they were in contact with the cap beams.  The weights of the 
transverse beams and girders are therefore included as a part of the applied load.  

The load was increased gradually until the desired load level was achieved.  The load was 
maintained for a period of time until the readings of the strain gages and the LVDTs stabilized.  
The deck was then unloaded until the applied load reached zero and a second loading cycle was 
started.  The magnitude of the maximum load applied in the successive load cycles was 
incremented until failure of the deck was achieved. 

 
4.6. MATERIALS TESTS 

After the completion of the deck destructive testing, concrete cylinders and coupons of 
steel reinforcement were obtained for material properties verification.  In addition, pull-off tests 
were conducted to verify the bond between the CFRP sheets and the concrete surface. 

 
4.6.1. Concrete   
Twelve 4 in. x 8 in. (100 mm x 200 mm) cylindrical concrete cores were obtained from 

different locations of the bridge decks for laboratory evaluation of the concrete strength.  Three 
of these concrete cylinders were tested under uniaxial compression to determine the compressive 
strength of the concrete, as shown in Figure 4.25.  Test results indicated that the average concrete 
compressive strength was 8147 psi (56.2 MPa).  Table 4.1 summarizes the results of concrete 
cylinder tests.   

 
 

 
Figure 4.22.  Data acquisition channels for strain gages.   
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Figure 4.23.  Checking the strain gages prior to testing. 

 
 

 
Figure 4.24.  Tightening the nuts on the jacks in order to raise the steel girders. 
 
 

Table 4.1.  Results of Concrete Cylinder Tests. 

Sample No. Height 
in. (mm) 

Diameter 
in. (mm) 

Compressive  Strength 
psi (MPa) 

1 8.35 (212) 3.72 (94) 8,199 (56.5) 
2 8.4 (213) 3.73 (94) 7,528 (51.9) 
3 8.4 (213) 3.72 (94) 8,714 (60.1) 
  Average 8,147 (56.2) 
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4.6.2. Reinforcing Steel.   
Three coupons were obtained from the deck after the completion of the testing to failure 

of the decks.  These were 24-inch (610 mm) long, deformed rebars.  The three coupons were 
tested under uniaxial tension to determine their yielding and ultimate strengths.  Test results 
indicated that the average yield strength was 43,333 psi (298 MPa) and the average ultimate 
strength was 70,844 psi (488 MPa).  Table 4.2 summarizes the results of steel coupon tests.   

 

Table 4.2.  Results of Steel Coupon Tests. 

Sample No. Length 
in. (mm) 

Yielding 
psi (MPa) 

Ultimate Strength 
psi (MPa) 

1 24 (610) 44,620 (308) 70,633 (487) 
2 24 (610) 43,165 (298) 71,772 (495) 
3 22 (610) 42,215 (291) 70,127 (484) 
 Average 43,333 (299) 70,844 (488) 

       
 

4.6.3. Summary of Material Strength Tests 
The average concrete compressive strength of 8,147 psi and the average steel yield 

strength of 43,333 psi are significantly higher than the initial values for preliminary analyses and 
strengthening design.  The compressive strength of concrete is more than 3 times higher than the 
assumed value of 2,500 psi while the yield strength is about 31 percent higher that the assumed 
value of 33,000 psi.  Implication of strength variation on the behavior of the three decks is 
discussed further when examining experimental results.  Summary of these findings is given in 
Table 4.3. 

 
 

Table 4.3.  Comparison of Assumed and Actual Material Properties. 

 Concrete Strength
psi (MPa) 

Steel Yield Strength 
psi (MPa) 

Assumed 2500 (17.2) 33,000 (227) 
Actual 8147 (56) 43,333 (298) 

% Difference 226 31 
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(a) Uniaxial compression test setup 

 

 
(b) Tested specimen 

 
Figure 4.25.  Uniaxial compression test of concrete cores. 
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5. EXPERIMENTAL RESULTS 

 
5.1. INTRODUCTION 

The following sections will discuss the experimental results obtained from static testing 
to failure of the bridge decks.  These include the measured loads, deflections, and reinforcement 
strains.  Decks 1 and 2 were strengthened with NSM CFRP rods, and bonded CFRP sheets, 
respectively, to improve their flexural capacity by approximately 30%.  Deck 3 was used as a 
benchmark.  Each of the three decks was tested to failure using static load cycles.  The maximum 
load applied in each cycle was incremented until failure was achieved.  

 
5.2. DECK 1 – NSM CFRP RODS 

A plot of the applied load vs. deflection of deck 1 is shown in Figure 5.1.  From this 
figure, it can be seen that the deck was loaded in three cycles.  For each cycle, the slope of the 
loading portion of the curve is an indicator of the stiffness of the deck at the beginning of the 
cycle.  Observing the loading portions of the curve, it can be seen that up to the last loading cycle 
the deck had minimal change in stiffness, which indicates that the steel reinforcement did not 
yield.  Residual deflection is related to the reduced stiffness of the deck due to cracking.  
Initiation of yielding can be detected from the change of slope of the deflection envelope.  This 
occurred at approximately 450 kips (2003 kN).  At this same load level, it was observed that the 
cuts on the parapet walls had closed, engaging them into the load resistance mechanism of the 
deck.  As the load was increased beyond 450 kips, cracking of the hardened epoxy adhesive was 
heard.   
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Figure 5.1.  Experimental load-deflection relation for deck 1.  
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Although CFRP rods are not ductile, it can be seen from Figure 5.1 that some pseudo-
ductile behavior was observed.  This could be related to the internal slippage of the mounted rods 
at higher load levels as well as the gradual rupture of the rods at ultimate capacity.  Failure 
occurred when some of the CFRP rods ruptured at mid-span at locations of the widest cracks.  
The failure load of this deck was 596 kips (2652 kN).  Figures 5.2 and 5.3 show the failure of 
deck 1.   

The measured deflections along the bridge axis at different load levels are shown in 
Figure 5.4.  It can be seen from this figure that at lower load levels, the deflection was 
approximately proportional to the applied load.  At higher load levels, the deflection started to 
increase much faster than the load due to stiffness degradation caused by the development of 
additional cracks.  For example, when the load increased from 400 to 500 kips (1780 to 2225 
kN) the deflection was more than double.   

Figure 5.5 shows the measured deflections along a line at a quarter-point on the 
transverse axis of deck 1.  Similar deflection behavior is observed on this line.  The only 
difference is that the maximum measured deflection at mid-span was larger at the ultimate 
load.  This could be related to the simple support/plate effect, in which the unsupported edges 
at mid-span are expected to deflect more than at the center of the deck due to minimal edge 
restraint.  One of the LVDTs did not work close to maximum load because the deflection 
exceeded the range of the LVDT. 

Figure 5.6 shows the measured strain of the steel reinforcement.  Only four of the strain 
gages measured strain.  The rest of the strain gages did not work due to exposure to harsh 
environment for a period of time.  In this figure, it can be seen that the cracking of the deck 
initiated at approximately 235 kips (1045 kN).  Between 235 and 430 kips (1045 and 1914 kN), 
the measured strain was proportional to the applied load.  At that same load level, the cuts on the 
parapet walls closed causing an increase in the stiffness of the deck.  Once the concrete of the 
parapet started to crush at about 557 kips (2479 kN), the steel reinforcement started to pick up 
strain again.  The approximate steel strain at yielding was approximately 0.0018 in./in. 
(mm/mm).  Similar behavior was observed on the measured strain of FRP, as shown in Figure 
5.7.  A number of the strain gages on the mounted FRP rods did not work.   

In general, the measured strain in the reinforcement was dependant on the distance of the 
strain gage from the nearest crack.  The closer the strain gage was to a crack, the higher the 
measured strain.   
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Figure 5.2.  Cracks on the soffit of deck 1 after testing to failure.  
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Figure 5.3.  Rupture of the mounted CFRP rods at different locations.  
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Figure 5.4.  Measured deflection along the longitudinal axis of deck 1. 
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 Figure 5.5.  Measured deflection along quarter-point on the transverse axis of deck 1.   
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Figure 5.6.  Measured strain of the steel reinforcement of deck 1. 
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Figure 5.7.  Measured strain of the mounted CFRP rods for deck 1. 
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5.3. DECK 2 - BONDED CFRP SHEETS 
The second deck of the bridge was strengthened with CFRP sheets.  A plot of the applied 

load vs. deflection is shown in Figure 5.8.  From this figure, it appears that steel yielding started 
at about 473 kips (2105 kN), where deflection started to increase under constant loading.  Some 
residual defection was observed when the load was removed.  Compared to the slope of the 
diagram right after cracking, the slope of the loading curve for the final cycle indicates that the 
stiffness did not degrade significantly.  As the load was increased, cracking sounds from the 
rupture of the FRP sheets was heard.  Rupture of the CFRP sheets rupture occurred at various 
locations along the original formlines of the deck.  In addition, small strips of FRP started to 
peel-off.  This gradual failure mode of CFRP sheets resulted in a pseudo-ductile behavior prior to 
failure.  The final failure mode was a combination of rupture and delamination of the sheets.  
The failure load for this deck was 542 kips (2412 kN).  Figures 5.9 and 5.10 show the failure of 
deck 2.   

The measured deflections along the bridge axis at different load levels are shown in 
Figure 5.11.  Deflections of this deck were smaller than those measured on deck 1 at similar load 
levels, indicating higher stiffness for deck 2.  Figure 5.12 shows the measured deflections along a 
line at quarter-point on the transverse direction of deck 2.  Similar to deck 1, the maximum 
measured deflection at quarter-point was larger than that at the center of the deck.  The LVDTs 
closer to the support did not provide any measurement due to a bad connection.  Figure 5.13 
shows the measured strain of steel reinforcement.  Most of the strain gages either did not work or 
provided corrupted data.  Only three of the strain gages provide data.  This figure indicates that 
the yielding of steel reinforcement is achieved at approximately 0.0017µε, which is similar to 
that obtained for deck 1.  The measured strain of FRP is shown in Figure 5.14.  Strain gage F8, 
which was located at mid-span, measured higher strain than other strain gages.  Strain measured 
started to increase rapidly close to ultimate.   
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Note: 1 kip = 4.45 kN; 1 in = 25.4 mm 

Figure 5.8.  Experimental load-deflection relation for deck 2. 
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(a) Cracks on deck soffit 

 

 
(b) Cracks on the side of the deck 

Figure 5.9.  Cracks on deck 2 after testing. 
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(a) Rupture of CFRP at formlines 

 

 
(b) Peeling of CFRP sheets 

 

 
(c) Close up showing peeling of CFRP sheets 

 
Figure 5.10.  Rupture of the Mounted CFRP at ultimate capacity. 
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Figure 5.11.  Measured deflection along the longitudinal axis of deck 2.   
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Figure 5.12.  Measured deflection along quarter-point on the transverse axis of deck 2. 
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Figure 5.13.  Measured strain of the steel reinforcement of deck 2. 
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Figure 5.14.  Measured strain of the CFRP sheets for deck 2. 
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5.4. DECK 3 – NO STRENGTHENING 
A plot of the applied load vs. deflection for this deck is shown in Figure 5.15.  Before the 

last loading cycle, the decks had minimal change in stiffness, indicating that the steel 
reinforcement did not yield.  Yielding of steel reinforcement occurred at approximately 417 kips 
(1856 kN), where the curve started to flatten due to loss of stiffness.  The failure load of this 
deck was 463 kips (2060 kN).  Figures 16 and 17 show the failure of deck 3.   

The measured deflections along the bridge axis at different load levels are shown in 
Figure 5.18.  At lower load levels, the measured deflections are similar to those of the deck with 
NSM rods.  However, significantly larger deflections were measured at higher load levels.  
Figure 5.19 shows the measured deflections along a line at a quarter-point on the transverse axis 
of the deck.  Unlike the strengthened decks, the measured deflection at the center of this deck 
was larger than that at the quarter-point.  Figure 5.20 shows the measured strain on steel 
reinforcement.  This Figure indicates that yielding of steel reinforcement occurred between 350 
and 400 kips (1558 to 1780 kN).  Yielding strain was approximately 0.0017 in./in. (mm/mm). 
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Figure 5.15.  Experimental load-deflection relationship for deck 3.  
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(a) Cracks on the deck soffit testing 

 
 

Concrete crushing

Flexural cracks

 
(b) Cross section through the deck showing concrete crushing 

 
Figure 5.16.  A section through deck 3 after testing at failure. 
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Figure 5.17.  Deck 3 at failure.  
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Figure 5.18.  Measured deflection along the longitudinal axis of deck 3.   
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Figure 5.19.  Measured deflection along quarter-point on the transverse axis of deck 3. 
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Figure 5.20.  Measured strain of the steel reinforcement of deck 3. 
 



 

 

65

6. FLEXURAL ANALYSIS AND COMPARISON WITH EXPERIMENTAL RESULTS  

 
6.1. GENERAL 

This chapter introduces the analysis of the test results for the three bridge decks.  Since 
one of the objectives of this study was to verify the contribution of the strengthening systems to 
the strength of the decks, ultimate strength and the complete flexural behavior were predicted 
and compared with experimental results.  The former is intended to provide a simple tool for 
design/analysis of FRP strengthened decks.  The latter is intended to provide an in-depth study of 
the structural condition and flexural performance of the bridge decks.  The results of the 
destructive tests are presented in this section in the form of load-deflection and load-
reinforcement strain curves.  Comparisons between analytical and experimental results are made 
and conclusions are provided.   

Once the destructive testing of the bridge decks was completed, concrete cores and steel 
coupons were obtained from the bridge deck.  Testing of these specimens indicated that the 
actual material properties significantly exceed those used in design of the strengthening.  

To verify the experimental results, the decks are analyzed using the strength analysis 
method (SAM) and the actual materials properties.  The deck strengthened with FRP sheets is 
investigated first.  The same approach is used to analyze the deck strengthened with NSM FRP 
rods with the proper modifications.   

The boundary conditions are calibrated by comparing the experimental results of 
reinforcement strains and deflections to the predicted values. 

 
6.2. BASIC ASSUMPTIONS 

Experimental results of RC flexural members strengthened with surface bonded FRP 
composites show that flexural capacity can be predicted using the same assumptions made for 
members reinforced with steel bars (Nanni et al., 1998).  Behavior prediction of a given member 
cross-section is performed based on of the following assumptions: 

 
• At any loading level, strain in the concrete (εc), steel (εs), and FRP (εf) are proportional to 

their distance from the neutral axis, N/A (see Figure 6.1); 
• The maximum strain attainable in compression concrete is 0.003 in./in. (mm/mm), provided 

that the specified ultimate strain of FRP reinforcement does not occur first; 
• Concrete in tension is ignored; 
• The stress-strain relationship of concrete is based on the parabolic equation proposed by 

Vecchio and Collins (1986), as shown in Figure 6.2;  
• The stress strain relationship for steel reinforcement is assumed to be elastic-perfectly-

plastic, as shown in Figure 6.3; 
• The stress-strain relationship of FRP is linear with an ultimate strain, εfu, taken as the 

ultimate strength, ffu, divided by the modulus of elasticity of FRP, Ef, as shown in Figure 6.3; 
• The compressive stress distribution in the concrete is represented by Whitney�s equivalent 

rectangular compressive stress block, provided that the appropriate stress block factors are 
used; 
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• Concrete and existing steel reinforcement have an initial strain at FRP installation due to the 
self-weight of the member.  

• Perfect bond exists between the concrete and steel and FRP reinforcement. 
 
The failure of FRP-strengthened flexural members could be governed by the rupture of 

FRP reinforcement (tension-controlled failure) or by the crushing of concrete (compression-
controlled failure).  The steel reinforcement may or may not  yield prior to failure.  Hence, the 
concept of under-reinforced and over-reinforced sections is applicable for FRP-strengthened 
flexural members.   
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Figure 6.1.  Strain and stress conditions of a RC section strengthened with 

                                 FRP reinforcement. 
 

6.3. STRENGTH ANALYSIS METHOD 
 
6.3.1. Deck Strip with Surface Bonded Carbon FRP Sheets   
Figure 6.4 illustrates a unit strip of the deck strengthened with CFRP sheets.  The strip 

has a width b of 12 in. (305 mm), a depth h of 18.5 in. (470 mm) and an effective depth to steel 
reinforcement d of 16.5 in. (419 mm).  To increase the capacity by 30%, the strengthening design 
called for 0.042 in2 (27 mm2) of FRP per foot of deck.  As indicated earlier, field inspection of 
the concrete surface under the asphalt overlay revealed the concrete was sound.  Hence, the full 
depth of the member was considered effective.  

Considering the geometry shown in Figure 6.1, the dead load moment was calculated as 
MDL = 22.6 ft-kip/ft (101 kN-m/m).  This includes the weight of the parapets of the bridge, which 
was uniformly distributed over the deck.  The initial concrete strain at the bridge soffit, εbi, at the 
time of FRP installment, assuming a cracked section, is determined using the following equation:  

 
( )

ccr

DL
bi EI

kdhM −
=ε  (6.1) 
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Note: 1 ksi = 6.895 MPa, 1 in./in. = 1 mm/mm 

Figure 6.2.  Parabolic stress-strain relationships of concrete. 
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Figure 6.3.  Stress-strain relationships of reinforcing materials. 



 

 

68

 
 

d = 16.5�
h = 18.5�

b = 12�

Af = 0.042 in2

As = 1.88 in2

 
Figure 6.4.  Cross-section of a deck strip showing bridge deck details. 

 

 
In which kd is the depth of the neutral axis, Icr is moment of inertia of the cracked section, and Ec 
is the modulus of concrete.  The parameter k is the ratio of the depth of the neutral axis to the 
depth of steel reinforcement, which can be determined using the following equation: 
 

n)n(n2k 2 ρ−ρ+ρ=  (6.2) 
 

Using equation  (6.2), the multiplier on the beam depth to find the depth of the neutral 
axis of the cracked section is calculated as k = 0.279.  This produces a cracked moment of inertia 
of Icr = 1907 in4.  The tensile strain at the deck soffit at the time of FRP installation is calculated 
to be 417 µε.  Incorporating this initial tensile strain in analysis has a small influence on the 
predicted capacity. 

The strength analysis method calculates the capacity of the section by utilizing force 
equilibrium and strain compatibility based on the constitutive laws of the materials.  The stress 
and strain distributions at ultimate are shown in Figure 6.5.  For computational ease, the non-
linear stress-strain distribution of compression concrete is replaced by the Whitney�s equivalent 
rectangular stress block (Whitney, 1942).  The equivalent stress block results in a uniform stress 
of α1f'c extending over a depth of β1c.  The ACI 318-95 provides the values for α1 and β1 for the 
case where the concrete strain reaches 0.003.  However, it is likely to encounter cases in which 
the strengthening may result in the rupture of FRP rather than the crushing of concrete.  In this 
case, the maximum concrete strain is less than 0.003.  The values of the stress block factors 
given by the ACI are, therefore, not valid and different values for α1 and β1 should be calculated 
based on the expected concrete compressive strain at failure.    
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Figure 6.5.  Strain and stress distribution in a RC section at ultimate. 

 
 
The general equation for the nominal moment capacity of a reinforced concrete section 

strengthened with FRP reinforcement is as follows (ACI Committee 440, 2000): 
 

�
�

�
�
�

� β−+�
�

�
�
�

� β−=
2
chfA85.0

2
cdfAM 1

ff
1

ssn  (6.3) 

 
The term fs indicates that the steel may not yield at ultimate capacity.  This case may be 

encountered when the addition of FRP reinforcement results in an over-reinforced section.  A 
reduction factor of 0.85 is applied to the moment contribution of the FRP reinforcement accounts 
for the novelty of the system (ACI Committee 440, 2000).  For this study, this reduction factor is 
taken as 1.0.   

Because of the number of unknowns involved, the stresses in the steel and FRP 
reinforcement cannot be determined directly.  The solution is achieved by iteration procedure in 
which the depth to the neutral axis, c, is estimated and the stresses in the materials are calculated.  
An initial assumption of c = 0.15d is reasonable in most cases.  The depth of neutral axis is then 
calculated based on equilibrium and compared with the assumed values.  Iteration is terminated 
when the two values of c converge.  

 
Iteration Procedure.  After the second iteration cycles, the value of c = 1.95 in. (49.5 mm) was 
used.  The failure mode can be predicted as follows: 

If �
�

�
�
�

� −ε>ε+ε
c

ch
cubifu , then εc = εcu  →  failure is controlled by concrete crushing. 

If �
�

�
�
�

� −ε<ε+ε
c

ch
cubifu , then εf = εfu  →  failure is controlled by FRP rupture.  

For the current case: 
 

0255.0
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95.15.18003.001711.0000417.00167.0 =�
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�
�
�

� −<=+ in./in. (6.4) 

 
Therefore, the failure mode is FRP rupture.  From compatibility we get:  
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0167.0fuf =ε=ε  in./in. (6.5) 
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which produces stress levels in the FRP and reinforcing steel of: 

ksi550ff fuf ==  (6.8) 
ksi33.43ff yssys ==�ε≥ε  (6.9) 

 
The parameters that define the equivalent stress block can be derived from any of the 

concrete stress-strain relationships available in literature.  Using the known parabolic equation 
for stress-strain relationship of concrete, simpler formulas can be derived as follows: 
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2
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ε′β
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In which, 
 

c

c
c E

f71.1 ′⋅
=ε′  (6.12) 

Therefore:  
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The depth of the neutral axis, c, is then calculated as follows: 
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(6.16) 

 
Since 1.91 in. ≠ 1.95 in., further iteration is required.  Assuming c= 1.92 in., the results of 

the iteration are summarized below: 
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cest 
(in) 

Failure 
Mode εf 

ff 
(ksi) εs 

fs 
(ksi) εc β1 α1 ccalc 

(in) 
1.92 FRP Rupture 0.0167 550 0.0150 43.33 0.00198 0.720 0.770 1.927 

 
The nominal moment capacity is the calculated as follows: 
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 (6.17)

 
In which the full contribution of the FRP sheets is included without any reduction 

(R=1.0).  The maximum concentrated live load was determined as follows: 
 

( ) ft/kips6.18
5.25

)6.22141(4
L

MM4P Dn
L =−=−=  (6.18) 

 
The total capacity of the deck was obtained by multiplying the failure load PL by the 

width of the deck (25 ft).  The maximum theoretical live load that the deck can carry is therefore 
PL =  464 kips (2065 kN). 

 
6.3.2. Deck Strip with Near-Surface Mounted Carbon FRP Rods   
Figure 6.6 illustrates a 12-in (305 mm) strip of the deck strengthened with near-surface 

mounted CFRP rods.  For approximately 30% increase in capacity, the strengthening design 
called for 7/16 in. (11 mm) diameter rods spaced at 15 in. (380 mm) or 0.12 in2 (77 mm2) per foot 
width of the deck.  The effective depth is dn =18.0 in. (457 mm) for the mounted rods.  For the 
following calculations, the upper limit of the experimental strength of the CFRP rod of 183 ksi 
(1.26 GPa) was used in calculations (Yan, 1999).  The upper limit of rod strength was used due 
to a better anchorage mechanism in the field. 
 The multiplier on the beam depth, k, and the cracked moment of inertia, Icr, were 
calculated earlier as 0.279 and 1907 in4, respectively.  The tensile strain at the deck soffit at the 
time of FRP rods installation was 417 µε.  The strength analysis method was carried in the same 
manner presented earlier for beams with bonded FRP sheets.  The only difference was the use of 
the effective depth dn instead of �h� for bonded sheets.  Hence, the nominal moment capacity 
equation for a reinforced concrete section strengthened with near surface mounted FRP rods 
becomes:  
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 No reduction factor is used for the contribution of the FRP rods since this 

technology is similar to conventional construction.  
 
 



 

 

72
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dn = 18.0�

 
Figure 6.6.  Cross-section of a deck strip showing bridge deck details. 
 
 

Iteration Procedure.  After two iterations, the value of c = 2.25 in. (57 mm) was assumed.  The 
failure mode is predicted as follows: 

If �
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�
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ε>ε+ε

c
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cubifu , then εc = εcu  →  failure is controlled by concrete crushing. 
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cubifu , then εf = εfu  →  failure is controlled by FRP rupture. 
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Therefore, the failure mode was rupture of the FRP bars.  Utilizing compatibility 

requirements, the strains of FRP, concrete and reinforcing steel can be determined as follows: 
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Which produces stress levels in the FRP and reinforcing steel of: 

 
ksi183ff fuf ==  (6.24) 

ksi33.43ff yssys ==�ε≥ε  (6.25) 
 

The parameters that define the equivalent stress block are:  
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Checking the value of c: 
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Since the calculated value of �c� is the same as the assumed value, no further iteration is 

required.  The nominal moment capacity is calculated as follows: 
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From which the equivalent concentrated load is determined as: 
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The total capacity of the deck was obtained by multiplying the failure load PL by the 

width of the deck (25 ft).  Thus, the maximum live load is PL = 452 kips (2013 kN). 
 
6.3.3. Deck Strip without FRP Strengthening 
Figure 6.7 illustrates a 12-in (305 mm) strip of the original deck.  The capacity of the 

deck was calculated using the traditional approach for under-reinforced flexural members.  The 
depth of the equivalent stress block is calculated as follows: 
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From which the equivalent concentrated load is calculated as 13.6 kips (60 kN) and the 

total theoretical live load is PL =  339 kips (1507 kN). 
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d = 16.5�
h = 18.5� 

b = 12�

As = 1.88 in2 

 
Figure 6.7.  Cross section of an original deck strip. 

 
 

6.4. COMPARISON  OF ULTIMATE STRENGTHS WITH THE   EXPERIMENTAL 
RESULTS 

Table 6.1 shows a comparison of predicted the live load capacities using strength analysis 
method and those from field-testing of the bridge decks.  The predicted Live load capacities were 
based on a concrete strength of 2500 psi (17.2 MPa), steel yield strength of 33,000 psi (227 
MPa), CFRP rod strength of 144 ksi (990 MPa), and CFRP sheet strength of 550 ksi (3.8 GPa).  
For the CFRP sheets, due to the lower strength of concrete, the predicted failure mode was 
governed by concrete crushing at CFRP sheet stress of 409 ksi (2.8 GPa).  Table 6.1 indicates 
that significant differences exist between theoretical and experimental results.  The higher 
experimental values could be related to higher material strength of concrete, steel, and FRP, the 
effect of bridge deck skew, strain hardening of steel reinforcement, and the boundary conditions 
(end fixity) of the decks.  It should be noted that other researchers have also investigated the 
experimental result of deck testing (Kemna, A. C., 1999 and Kemna D. J., 1999).  Conclusions 
similar to what is presented next were provided. 

 
Table 6.1.  Comparison of Predicted and Experimental Capacities. 

 Live Load Capacity, kip (kN) 
 Predicted1 Experimental 

CFRP NSM 311 
(1385) 

596  
(2651) 

CFRP Sheets 311 
(1385) 

542  
(2411) 

No 
Strengthening 

222 
(987) 

463  
(2059) 

1 Analytical based on assumed material strengths 
 
Material Effects.  The test results of three 4 in. x 8 in. (100 mm x 200 mm) concrete 

cylinders obtained from the bridge decks indicated that the average concrete compressive 
strength was 8,147 psi (56.2 MPa).  Also, the test results of three coupons tested under uniaxial 
tension indicated that the average yield strength of the steel reinforcement was 43,333 psi (298 
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MPa).  The tensile strength of the CFRP rods, as collected from literature, varied from 144 to 
183 ksi (990 to 1300 MPa) (Yan, 1999).  Since failure of most of tested rod specimens occurred 
at the anchorage, it is reasonable to assume that higher strength of the NSM CFRP rod could be 
achieved due to a better anchorage mechanism.   

To account for the higher that expected live load capacity for Deck 1, a new capacity was 
calculated using the upper limit of rod strength (183 ksi or 1300 MPa).  This value is still 
significantly lower that theoretical tensile strength of 349 ksi (2400 MPa), determined from the 
properties of the constituent materials (Yan, 1999).   

Table 6.2 shows a comparison of moment and live load based on the assumed (initial) 
material strengths, true material strengths [concrete strength of 8,147 psi (56.2 MPa), steel yield 
strength of 43,333 psi (298 MPa), CFRP rod strength of 183 ksi (1300 MPa), and CFRP sheet 
strength of 550 ksi (3.8 GPa)], and the experimental capacities.  Regarding Deck 2 (CFRP 
sheets), when considering the adjusted material strengths of concrete and steel, the resulting 
analytical failure mode is governed by rupture of the sheets.    

Table 6.2 indicates that the CFRP strengthening was effective for increasing the member 
strength.  The experimental capacities of the strengthened decks exceeded those theoretically 
predicted.  Given that the design strength of the CFRP sheets provided by the manufacturer is 
conservative, the combined failure mode of rupture and peeling of the sheets as was observed in 
the field was still higher than the predicted values.  The results of Table 6.2 indicate that the ratio 
of experimental to predicted capacity of the decks was higher for Deck 1 (NSM) than that for 
Deck 2 (sheets).  Based on these observations, other researchers concluded that the CFRP sheets 
are less effective and that premature failure caused this lower ratio (Kemna, A. C., 1999 and 
Kemna, D. J., 1999).   

 
 

Table 6.2.  Comparison of SAM and Experimental Capacities. 

 Moment Capacity, kip-ft/ft  
(kN-m/m) Live Load Capacity, kip (kN) 

 Predicted* Exp.** Exp./Pred. Predicted* Exp. Exp./Pred.

CFRP NSM 138 
(614) 

175 
(777) 1.27  452 

(2010) 
596  

(2651) 1.32 

CFRP Sheets 149 
(663) 

161 
(715) 1.08 496 

(2205) 
542  

(2411) 1.09 

No 
Strengthening 

109 
(485) 

141 
(626) 1.29 339 

(1507) 
463  

(2059) 1.37 

*    Analytical based on the true material strengths   
** Including dead loads           
 
Table 6.2 shows that the ratio of experimental to predicted capacities are higher for the 

two end decks (NSM and unsrtrengthened).  If a mixed mode of failure consisting of debonding 
and FRP rupture had not occurred in deck 2, a higher experimental capacity could have probably 
been achieved.  Table 6.2 also indicates that using the true material strengths, although 
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considerably increased the predicted capacities of the decks, did not fully explain the higher 
experimental values.  Additional differences between predicted and experimental capacities of 
the decks could be related to the effect of bridge deck skew, strain hardening of steel 
reinforcement, and the boundary conditions (end fixity) of the bridge decks.   

Skew Effect.  Based on an elastic finite element analysis of a typical bridge deck and 
considering the loading scheme used in testing, a 15-degree skew had minimal effects on the 
elastic behavior of the deck.  The flexural behavior and capacity with 15-degree skew could 
therefore be predicted with good accuracy using the unit strip approach.  This is due to the small 
skew angle and the distribution of the applied load on a line at mid-span parallel to the skewed 
supports.  Plate effect is more dominant if the load was applied at a point rather than distributed 
across the width of the deck.  For the current investigation, the skew effect on the capacity of the 
bridge decks was minimal and was therefore ruled out.  A summary of these findings is given in 
Appendix C. 

 Strain-Hardening Effect.  Strength analysis indicated that at failure, the strains of steel 
reinforcement for the deck strengthened with NSM rods, bonded sheets, and the unstrengthened 
deck are 0.0080, 0.0150, and 0.0391, respectively.  Strain hardening of steel reinforcement was 
expected to begin at about 0.012 to 0.020 strain (Wang and Salamon, 1998).  Accordingly, strain 
hardening had no contribution to the ultimate capacity of the deck strengthened with NSM rods, 
minimal contribution to the deck with bonded sheets, and could have contributed to the capacity 
of the unstrengthened deck.  This will be examined further later in this chapter.  

End Fixity Effect.  The variation of deck boundary conditions is represented by different 
levels of end fixity.  This may be related to different construction detailing (i.e., bottom 
reinforcement of the two end-span decks extended to the abutment walls) and aging influence 
(i.e., �freezing� of the supports).  The exact level of fixity at the supports of each deck cannot be 
determined directly from the experimental results.  Considering the symmetry of the bridge, the 
two supports of each deck were assumed to have the same fixity level.   

The maximum moment in a flexural member due to a given loading condition depends on 
the level of its end fixity.  The end fixity, referred to hereafter as F, could therefore be 
determined by comparing the theoretical and experimental flexural capacities.  The relation 
between F and the maximum moment due to a given loading condition could be determined by a 
simple structural analysis procedure.  Appendix D presents the derivation of the expressions that 
relate the end fixity to the maximum moments at mid-span, Mm, and at the supports, Me.  The 
moments resulting from the combined effect of concentrated load at mid-span, P, and uniformly 
distributed load, w, can be expressed as follows: 
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In which: 
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)1F2(8
1K D
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=  (6.39) 

 
Where: 
Mm   = mid-span moment   
Me    = end moment (at the support)  
Mc

m  = mid-span moment due to a concentrated load considering simple supports  
Mc

e   = end moment due to a concentrated load considering simple supports 
MD

m = mid-span moment due to distributed load considering simple supports 
MD

e  = mid-span moment due to distributed load considering simple supports 
Kc

m, Kc
e, KD

m, and KD
e = moment coefficient to determine the moments due to a given 

fixity level, F, from the corresponding moments defined above. 
 

6.5.  FLEXURAL BEHAVIOR ANALYSES 
Three parts may be distinguished in the flexural behavior of any steel reinforced concrete 

section: prior to cracking, after cracking, and after yielding of steel reinforcement.  The limit 
separating the first two parts is the cracking of the section.  The limit separating parts two and 
three is the plastification of the steel reinforcement with no account for the non-linear behavior 
of concrete.   

 
6.5.1. Un-cracked Section   
The un-cracked section can be treated as a linear elastic member.  Curvature at any 

section increases linearly with the applied load.  The strain in steel, NSM rods, and surface 
bonded sheets are very small and were, therefore, ignored.  The curvature, φ, at any loading level 
prior cracking can be determined as follows: 

 

cg EI
M=φ  (6.40) 

 
The cracking moment of the section is governed by concrete tensile properties alone.  

Steel and FRP reinforcement have minimal effect on the cracking moment or the stiffness of the 
section.  The member may experience cracking when the tensile stress in the extreme tension 
fiber exceeds the conservative tensile strength of concrete proposed by (ACI 318-95): 

 
'
cr f5.7f =  (6.41) 

 
The cracking moment was calculated as follows:  
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When the moment caused by live and dead loads exceeds the cracking moment, cracks 
will initiate and the properties of the cracked section will govern the behavior.  The behavior 
from this point on is that of a cracked section. 

 
6.5.2. Cracked Section (Before Yielding) 
The initial concrete strain at the level of the NSM rods, εni, due to the moment, Mi, at the 

time of FRP installation was calculated as follows:  
 

( )
ccr
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ni EI

kddM −
=ε  (6.43) 

 
Similarly, the concrete strain at the level of the surface bonded sheets, εbi, was calculated 

as follows:  
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The moment of inertia of the cracked section, Icr, is calculated using the following 

general equation: 
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Strains of steel, εs, NSM rods, εf,n, and the bonded sheets, εf,sh, were calculated using the 

following: 
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However, if the flexural member did not have any cracks at the time of FRP application, 

the initial concrete strains, εni and εbi, could be ignored.  In addition, if the initial moment, Mi, of 
a cracked member was small compared to the total dead and live load moments, the initial 
concrete strains, εni and εbi, are very small and were be ignored. 

Based on the equilibrium condition of the cross section, the depth of the neutral axis, c, 
can be expressed as follows: 
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The values of fs and ff,n (or ff,sh) can be determined using constitutive material laws.  The 
full behavior of the strengthened member is established through iterative procedure.  In this 
procedure, a concrete strain, εc, is assumed first.  Next, a value for �c� was assumed.  The strains 
in steel, NSM rods, and bonded sheets are then calculated and used to determine the stresses in 
reinforcement using the constitutive laws of materials.  The corresponding depth of the neutral 
axis, c, was then calculated using the equilibrium equation.  If the calculated depth, c, was the 
same as the assumed value, then equilibrium is satisfied and the behavior at the assumed 
concrete strain is obtained.  A new value for εc is assumed and iterations are made again.  If the 
calculated depth, c, is different than the assumed value, a new value for �c� is assumed and the 
iteration is continued until convergence is achieved.  Once the depth of the neutral axis, 
reinforcement stresses, and stress block factors are determined, the bending moment is calculated 
as follows: 
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The curvature of the flexural section can be determined as follows: 
 

cEI
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Analysis was terminated when either the maximum compressive strain of concrete, εc, 

reaches 0.003 or the tensile strain in FRP, εf, reaches its ultimate strain, εfu.  
The live load, PL, corresponding to the given moment was determined using the 

following equation: 
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6.5.3. Cracked Section (After Yielding) 
A cracked section after yielding of steel reinforcement is analyzed using the same 

approach outlined earlier (before cracking).  From a computational stand-point, the only 
difference is that once the steel strain reaches the yielding strain (εs = εy), the yielding stress, fy, 
is substituted for fs in calculations.   

 

6.5.4.  Comparison of the Predicted Moment-Curvature Behavior 
Figure 6.8 illustrates a comparison of the analytical moment-curvature relationships for 

unit strips of the three decks.  This figure shows that a trade off exists between capacity and 
ductility.   

Typically, a flexural member strengthened with surface bonded FRP will have higher 
capacity due to the addition of FRP.  Prior to cracking, the member behavior is the same for all 
cases and is independent of reinforcement type.  The contribution of FRP to the stiffness of the 
strengthened members, represented by EcIcr, will take place after the member has cracked and the 
contribution of the concrete is significantly reduced.  As shown in the figure, the contribution of 
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FRP to the elastic stiffness of the member after cracking is insignificant.  This is due to the 
relatively small amount of FRP added to the section compared with the area of existing steel.  
The stiffness of the cracked section will reduce further when the steel yields.  At this stage, the 
section stiffness is only influenced by the compression concrete and FRP reinforcement.  While 
the reinforced section had almost no stiffness after yielding, a proportional moment-curvature 
can be seen for sections with FRP reinforcement.  It should be noted that the stiffness of the FRP 
strengthened strips is not constant after yielding.  This is due to the non-linear behavior of 
concrete at higher strain levels.  The stiffness after yielding is influenced by the amount and the 
stiffness of added FRP reinforcement (Af and Ef) and is proportional to their product.  The load 
level at which steel reinforcement yields increases with the addition of FRP.   

The FRP will carry some of the tensile force thus, delaying the yielding of the steel 
reinforcement.  The increase in the yielding load (or moment) will depend on the amount and 
stiffness of the added FRP.  Increasing either parameter will increase the yielding load level.  For 
unit strips with NSM rods, bonded sheets, and, no strengthening, the calculated yielding 
moments were 107.5, 106.0, and 102.5 ft-kip/ft (478, 472, and 456 kN-m/m), respectively.  The 
flexural capacities and modes of failure of the strips are those determined earlier by SAM 
method. 

Possible failure modes of FRP strengthened section are either FRP rupture or concrete 
crushing.  In the case of failure controlled by concrete crushing, the neutral axis will migrate 
downward at ultimate load as a result of a larger compression block required to counter balance 
the additional tensile forces due to FRP addition.  This results in smaller curvature at ultimate 
compared with the unstrengthened case.  In the case of FRP rupture, the concrete strain εc is less 
than 0.003 in./in. (mm/mm) at failure.  The combined effect of smaller maximum compressive 
strain and smaller depth of neutral axis will result in smaller curvature at ultimate. 
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Figure 6.8.  Analytical moment-curvature relations for bridge deck strips. 
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6.5.5. Deflection Calculation 
The bending deformations of a RC flexural member can be calculated by numerical 

integration of the curvature diagram.  The moment-deflection diagram depends on the geometry 
of the flexural member, boundary conditions, and loading configuration.  The differential 
bending rotation dθ can be expressed in terms of the curvature, Φ, as follows: 

  

dxdx
EI
Md Φ==θ  (6.53) 

 
Figure 6.9 shows the main steps in calculating the mid-span deflection of a simply 

supported beam having some fixity at the supports and loaded with uniformly distributed load 
over the entire span and a concentrated load at mid-span.  Note that, in this figure, it is assumed 
that the end fixity is not large enough to cause cracking at the negative moment regions.  This 
case simulates the actual behavior of the bridge decks observed in the field.   

The curvature diagram was constructed by analyzing different sections along the length 
of the member at certain intervals (e.g., L/10).  For each section, the moment acting on the 
section at the given load level is determined.  The moment resulting from the concentrated load 
and acting at any section at a distance 0 ≤ X ≤ L/2 from the support can be expressed as follows: 
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The moment resulting from the distributed load at any section is expressed as follows: 
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The curvature corresponding to the moment is determined at each section, thus obtaining 

the complete curvature diagram.  The curvature is numerically integrated twice to obtain the 
rotation and the deflection of the member, successively.  The constants of the integration are 
determined from the boundary conditions.  Once the complete rotation diagram was constructed, 
the deflection at any section x can be determined by integrating the rotation diagram as follows: 
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For the mid-span deflection, the integration limits are set from 0 to L/2.  The approach 

utilized in this study is a replica of the conjugate beam method.  Other methods for deflection 
calculations, such as the moment area method and the elastic load method can also be used.  

The rotation at any section is determined using the following expression: 
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  For comparison purposes, the predicted moment/mid-span deflection diagrams were 
constructed for the three decks.  Determination of the moment diagram at each load level was 
based on the procedure presented earlier taking into account the effect of the end fixity.  
Calculations were based on a unit strip of each deck loaded at mid-span with a point load and a 
distributed load due to the self-weight. 

 
6.6. COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS 

End fixity of each deck was initially calculated based on the theoretical flexural capacity 
of the deck.  However, degree of fixity, material properties, etc. can all vary within reasonable 
ranges in order to achieve a better fit between theoretical and experimental results.  This section 
illustrates the results of this empirical procedure that also accounted for maintaining consistency 
among the three decks and obtaining a reasonable match with experimental deflections and 
reinforcement strains. 

 
6.6.1. Load-Deflection Relationships 
Theoretical deflections were obtained by the double integration of the theoretical 

moment-curvature curves using the procedure outlined in Section 6.5.5. 
 
6.6.1.1. Bridge Deck with NSM Carbon Rods 
Figure 6.10 shows a comparison of the experimental deflections and deflections 

calculated using fixity level of 16 percent.  Analytical deflection calculations were terminated 
when the moment capacity matched the experimental value.  This was achieved at an FRP stress 
of 235 ksi (1620 MPa).  From Figure 6.10, it could be concluded that this fixity level provided 
the best match in terms of the overall flexural behavior.  This level of fixity was also similar to 
that obtained for the deck with no strengthening, as will be discussed later.  The two decks were 
expected to have similar boundary conditions due to symmetry.  However, this indicated that the 
tensile strength of the CFRP rods is higher than the initial assumption of 144 ksi (993 MPa).   

Although a tensile strength of 235 ksi (1600 MPa) is about 28 percent higher than the 
maximum value of 183 ksi (1300 MPa) obtained from laboratory testing, this value is still 
significantly lower that theoretical strength of 349 ksi (2400 MPa), determined from the 
properties of the constituent materials (Yan, 1999).  The exact strength of the CFRP rods cannot 
be determined but it could be concluded that the actual strength of the CFRP rods is larger than 
183 ksi (1.26 GPa) and is approximately 235 ksi (1600 MPa). 

 
6.6.1.2. Bridge Deck with Carbon FRP Sheets 
Figure 6.11 shows a comparison of the predicted and the experimental load-deflection 

curves for two levels of ends fixity, 12 and 18 percent.  The figure indicates that end fixity level 
of 12 percent provides a better match with experimental results.  However, it does not explain the 
higher initial stiffness of deck demonstrated experimentally.  This high initial stiffness can only 
be matched if the decks had a level of fixity significantly higher than 12 percent.  Much higher 
fixity level would result is a much smaller maximum theoretical deflection, mid-span moment, 
and strains at ultimate that do not correlate with the measured experimental values.  After the 
three decks were tested, this deck was jacked up and no shear key or any other possible rotational 
restraints were observed at the supports.  There is no clear evidence as to what caused this higher 
initial stiffness.  
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Figure 6.10.  Comparison of mid-span deflections for the deck with NSM. 
 
  
As shown in Figure 6.11, the deck exhibited some ductility prior to failure.  This was 

related to the yielding of steel reinforcement as well as the gradual failure of bonded sheets, 
which was a combination of debonding and delamination at ultimate.   

 
6.6.1.3.   Bridge Deck with No Strengthening 
Using the theoretical nominal moment capacity, the level of fixity of the unstrengthened 

deck was calculated as 26 percent.  However, this fixity level was calculated without accounting 
for higher experimental capacity due to strain hardening of the steel reinforcement.  In addition, 
the predicted load-reinforcement strain curves did not correlate well the experimental results for 
this fixity level.  This is discussed further in the following section.  A fixity level of 16 percent is 
correlated better with the experimental strain measurements.  Figure 6.12 shows a comparison of 
the experimental and two theoretical load-deflection curves based on 16 and 26 percent fixity.  
Deflection calculations based on 16 percent fixity level provided better match with the measured 
deflections.  It accounts for possible higher experimental capacity at failure due to the 
contribution of steel strain hardening.  
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Figure 6.11.  Comparison of mid-span deflections for the deck with CFRP sheets. 
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Figure 6.12.  Comparison of mid-span deflections for the deck with no strengthening. 
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6.6.2. Cracking Moment 
Based on field observations during testing and the comparison of experimental and 

theoretical results it was concluded that the cracking moments of the bridge deck exceeded that 
based on ACI 318-95 building code.  Best correlation of cracking moments with experimental 
results was obtained for a tensile strength of concrete of '

cf12  rather than the value of '
cf5.7 of 

the ACI 318-95 building code.  This could be related to higher tensile strength of concrete due to 
aging. 

 
6.6.3. Load-Strain Relationships 
Since the moment acting on a section is strictly related to the loading configuration and 

the boundary conditions, comparing the experimental and analytical strains can be used to verify 
the accuracy of the assumed boundary conditions.  Many of the gages on FRP and steel 
reinforcement did not function due to over exposure to harsh environment (e.g., freezing/thaw 
and wet/dry cycles).  However, data collected with the remaining strain gages were sufficient to 
draw conclusions.  Strains measured at mid-span are more reliable as is more likely to have a 
cracked section at this location that correlates better with the theoretical analysis.  

 
6.6.3.1. Bridge Deck with NSM Carbon Rods 
Figure 6.13 shows a comparison of the analytical steel strain at mid-span and the 

measured strains of two strain gages S5 and S6.  Prior to cracking, the measured strains were 
very small.  Upon cracking, steel reinforcement started to measure strains.  Good agreement was 
observed between theoretical and experimental curves.  At higher load level, the cuts made on 
the bridge parapet closed, resulting in some contribution to the stiffness of the deck.  Comparison 
of theoretical and experimental FRP strains is shown in Figure 6.14.  Good agreement was also 
observed between theoretical and experimental FRP strains.   

 

6.6.3.2. Bridge Deck with Carbon FRP Sheets 
The steel reinforcement of the deck strengthened with carbon sheets were instrumented 

with three strain gages at mid-span.  Two of these strain gages were found corrupted.  
Comparison of the theoretical and experimental steel strains is shown in Figure 6.15.  The 
smaller measured strain is due to the strain gage location, which was at a few inches from a 
crack.  The strain gage signal was lost prior to failure.  Similarly a comparison of the theoretical 
and experimental strains measured on the FRP sheets are shown in Figure 6.16.  Signals from 
both strain gages were lost prior to failure.  Strain gage F15 started to pick up strain at a higher 
pace when a crack formed very close to its location.   

 
6.6.3.3. Bridge Deck with No Strengthening 
For the unstrengthened deck, the fixity level to satisfy theoretical nominal moment 

capacity was determined earlier as 26 percent.  Figure 6.17 shows a comparison of the 
experimental and predicted steel strains.  The analytical results indicated that the steel 
reinforcement would undergo yielding at a load level higher than that obtained from 
experimental results.  While the experimental results indicated that steel yielding occurred at a 
load level of 380 kips (1689 kN), the theoretical analysis based on 26 percent fixity indicated 
that yielding would occur at about 430 kips (1911 kN).  This indicated that the actual fixity level 
is lower that 26 percent.  
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Figure 6.13.  Comparison of steel strains for the deck with NSM rods. 
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Figure 6.14.  Comparison of FRP strains for the deck with NSM rods. 
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Figure 6.15.  Comparison of steel strains for the deck with FRP sheets. 
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Figure 6.16.  Comparison of FRP strains for the deck with FRP sheets. 
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Analysis of the deck indicated that the strain of steel reinforcement at failure was 0.038 
in./in. (mm/mm).  Since strain hardening of steel reinforcement is expected to begin at about 
0.012 to 0.020 in./in. (mm/mm) (Wang and Salmon, 1998), it is very likely that the strain 
hardening was achieved.  This behavior was not observed for the decks with NSM rods and 
bonded sheets due to lower strain level at ultimate namely, 0.011 and 0.018 in./in. (mm/mm), 
respectively.  As a result of this behavior, the actual capacity of the deck was higher that that 
predicted using the classical approach, which does not account for strain hardening.  This 
approach will therefore overestimate the level of fixity.  The actual level of fixity should be 
therefore determined such that steel yielding is achieved at a load level of 380 kips (1689 kN).  
Through back calculation, this level of end fixity was determined as 16 percent.  Comparison of 
steel strain for this level of fixity and the experimental results are also shown in Figure 6.17. 

 
6.7. SUMMARY 

Based on comparison of theoretical and experimental flexural behavior, the fixity for the 
deck strengthened with NSM rods, bonded sheets, and the unstrengthened deck were determined 
to be approximately 16.0, 12.0, and 16.0 percent, respectively.  For the deck strengthened with 
NSM CFRP rods, the experimental capacity exceeded the capacity based on CFRP strength of 
144 ksi (993 MPa).  More accurate capacity was calculated based on the upper limit of 
experimental test results of rods of 183 ksi (1.26 MPa).  For the deck strengthened with CFRP 
sheets, the experimental capacity was slightly larger than the theoretical capacity.  The actual 
capacity of the unstrengthened deck exceeded the analytical capacity due the strain hardening of 
steel reinforcement.  
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Figure 6.17.  Comparison of steel strains for the deck with no strengthening. 
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Table 6.3 shows a comparison of theoretical live load capacities determined using 
strength analysis method (SAM) and the experimental capacities based on these fixity levels.  
Table 6.4 shows a comparison of the corresponding mid-span deflection of the three decks.  
 The experimental failure modes of the bridge decks were as predicted theoretically based 
on the actual material properties.  The rupture of FRP controlled failure of the strengthened 
decks while the classical mode of failure of yielding of steel reinforcement followed by the 
crushing of concrete was attained for the unstrengthened deck. 

 
 

Table 6.3.  Comparison of Live Load Capacities. 

 (1)  
With End Fixity  

(2)  
SAM 

(3)  
Exp. 

 Fixity Live Load 
kip (kN) 

Live Load 
kip (kN) 

Live Load 
kip (kN) 

% Difference 

%100.
)1(

)1()3( −  

CFRP NSM* 16% 596 
(2650) 

496 
(2200) 

596 
(2650) 0 

CFRP Sheets 12% 544 
(2420) 

465 
(1890) 

542 
(2410) 0 

No Strengthening 16% 417 
(1850) 

337 
(1500) 

463 
(2060) 11 

     * Based on CFRP rod strength of 235 ksi (1.62 GPa) 
 
 

Table 6.4.  Comparison of Mid- Span Deflections at Ultimate Load Capacity. 
 Mid- Span Deflection, in (mm) 

 Theoretical Experimental 

% Difference 
%100.

.)Theo(
.)Theo(.)Exp( −  

CFRP NSM F = 16.0 % 3.26 (83) 3.87 (98) 19 

CFRP Sheets F = 12.0 % 3.49 (89) 3.52 (89) 0 

No 
Strengthening F = 16.0 % 6.11 (155) 6.51 (165) 7 
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7. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

7.1. SUMMARY 
 The primary purpose for conducting this research program was to verify through full 
scale testing the feasibility and effectiveness CFRP composites for the upgrade/strengthening of 
solid RC bridge deck.  This is a vital aspect of the research program since full-scale testing 
allows for a better understanding of the behavior of strengthened/unstrengthened bridge decks.  
Full-scale verification of the capacity improvement would allow for more applications of FRP 
technology for the strengthening/upgrade of deficient bridges and structures.  The full-scale field 
tests demonstrated the actual behavior of a structure and lead to a better understanding of the 
performance of the system as a whole, the influence of materials and boundary conditions, and 
therefore the strengthening design requirements.  However, in order to obtain reliable 
information from destructive load testing, great care must be taken in the design of the test and 
the instrumentation.  Measurements of load and deflection are very useful in calibrating 
analytical models or determine the stiffness behavior.  The boundary rotations and material 
strains should also be measured. 

Volume I of the research program aimed at demonstrating the feasibility and 
effectiveness of strengthening RC bridge decks with two systems of externally bonded FRP 
reinforcement to increase their flexural strengths as well as verifying design methodology and 
capacity improvement.  Load rating using MoDOT guidelines indicated that Bridge J857 did not 
require any load posting.  Inventory rating based on HS20 truck indicated that the bridge decks 
had a deficiency in ultimate strength capacity.  The level of deficiency would increase if an 
HS20 Modified truck were considered.  Two of the three simply supported decks were 
strengthened and tested to failure.  One span was strengthened using near-surface mounted 
(NSM) CFRP rods while the second span was strengthened using externally bonded CFRP 
sheets.  The objective of the strengthening scheme was to increase the flexural capacity by 
approximately 30%.  Each of the three spans was tested to failure by applying quasi-static load 
cycles.      

 
7.2. CONCLUSIONS 

Based on the outcome of the strengthening of the bridge decks, their observed behavior 
during testing to failure, and the comparison of theoretical and experimental results, the 
following conclusions can be drawn: 

 
1) The bridge slab had far more capacity than had been anticipated.  The higher experimental 

capacity of the unstrengthened deck was related to higher than anticipated material strengths 
and the influence of strain hardening of the steel reinforcement.   

 
2) Application of the FRP strengthening system was characterized by speed and ease of 

installation.  However, the installation of FRP strengthening systems is deceptively simple.  
Caution should be paid to ensure proper application in terms of material handling, fiber 
alignment (for FRP sheets), and mixing and application of epoxies.  The surface to which 
CFRP sheets should be smooth and cavities should be appropriately patched.  Improper 
surface preparation may cause premature failure due to rupture/debonding of bonded sheets. 
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3) Elastic finite element analysis (FEA) of the deck indicated that for the loading configuration 
considered in this study the moment distribution was similar to that obtained using a closed-
form beam analysis.  This was the result of the small skew angle of the deck (15 degree) and 
the load configuration in which load was applied on four points that was distributed across 
the width of the deck parallel to the supports.   

 
4) The addition of FRP reinforcement had insignificant contribution to the stiffness of 

strengthened decks prior to steel yielding.  This behavior was related to the relatively small 
amount of added FRP reinforcement.  The stiffness of strengthened decks after the yielding 
of the steel reinforcement was related to the axial stiffness of FRP reinforcement.  Similar 
results were obtained from the analytical investigation.  For simplicity, when checking 
serviceability requirements of FRP strengthened decks, the contribution of the FRP 
reinforcement should be ignored. 

 
5) The measured response of the decks from testing to failure indicated that some level of 

restraint existed even though the joints between the decks were cut clean.  A strengthening 
design based on the assumption of simple supports was therefore conservative.   

 
6) The experimental failure modes of the bridge deck strengthened with NSM rods was as 

theoretically predicted (rupture of the CFRP rods).  Failure of the deck strengthened with 
CFRP sheets was a mixture of debonding and rupture of the CFRP sheets.  The classical 
mode of failure of yielding of steel reinforcement followed by the crushing of concrete was 
attained for the unstrengthened deck. 

 
7) The strengthened decks exhibited ductile behavior prior to failure.  This behavior was due to 

the fact that steel reinforcement yielded prior to FRP failure.  There is trade off between 
strength increase and ductility.  

 
8) In deck 2, it is likely that the externally bonded reinforcement did not attain its full potential 

due to a mixed mode type of failure consisting of debonding and rupture.  
 
9) The approach utilized in this study (based on equilibrium of forces and compatibility of 

strains) for design/analysis of an RC deck strengthened with NSM FRP rods is satisfactory.  
The approach is also appropriate for an RC deck strengthened with CFRP sheets when the 
governing mode of failure is that of fiber rupture. 

 
 
7.3. RECOMMENDATIONS FOR FUTURE RESEARCH 

The following are recommendations for future research that are based on experimental 
observations and interpretation of test results. 

1) There is need for a research program to develop model construction specifications for 
agencies engaged in the FRP repair and inspection of highway bridges.  The study should 
develop recommended specifications, supporting tests, and field procedures to be integrated 
into existing state highway agency oversight activities in product acceptance, construction 
contracting, inspection, and repair with FRP composites.   
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2) With the development of externally applied FRP sheets and near surface mounted rods, 
durability performance may be considered a significant concern since these systems 
incorporate FRP at or near the surface of the concrete where the concrete has its greatest 
susceptibility to degradation from external influences.  A research program that identifies 
both the strengths and limitations for various FRP materials under several exposure 
conditions could address the durability issues.  The research program should also identify 
the construction procedure that ensures the long-term performance for FRP repair and 
retrofit systems bonded to concrete structural elements.  The aim of this program would be 
the ability to predict the long-term performance of FRP systems using test methods 
developed for conductance over a short period of time.  

3) Application of NSM FRP rods do not require any surface preparation work and requires 
minimal installation time compared to FRP sheets.  Since the effectiveness of this type of 
reinforcement is strictly related to the quality of bond between the reinforcement and the 
surrounding material, the good performance of bond between NSM FRP rods and concrete 
is crucial for this technique to be effective.  Groove sides roughness, application of primer 
coating, and concrete strength are all factors that can affect bond characteristics of epoxy 
with concrete and should be investigated. 

4) Research is also needed to investigate the variables pertaining to the type of rod to be used, 
that is, diameter, type of FRP material (Glass, Aramid, or Carbon FRP) and surface 
condition of the rod (smooth or deformed) in order to assess their influence on the 
effectiveness of the NSM system.  In addition, the issue of groove dimensioning of NSM 
FRP rods should be addressed.  No literature addressing the effect of groove dimensions on 
the bond for near surface mounted bars was available.   
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APPENDIX A: 

ORIGINAL BRIDGE PLANS 
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APPENDIX B: 
 

BRIDGE STRENGTHENING DESIGN 
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The approach discussed hereafter is used to determine the bending moment capacity of 
RC members strengthened with NSM FRP rods to meet the desired strength of 102 ft-k/ft (453 
kN-m/m).  The strengthening design approach is based on iteration procedure in which a 
concrete strain at failure is first assumed and the depth of neutral axis is determined by trial and 
error.   

 
Conversion factors 
1 in. =25.4 mm 
1 in./in. =1 mm/mm 
1 in2 = 645 mm2 
1 kip = 4.45 kN 
1 psi = 6.895E-3 MPa 
1 ksi = 6.895 MPa 
1 ft-k/k = 4.45 kN-m/m 
 
Design of NSM Strengthening 
The sectional and material properties are listed below.  

h = 18.5 in. 
b = 12 in. 
d = 16.5 in. 
dn = 18.0 in. 
f�c = 2500 psi 
As = 1.88 in2 
fy = 33000 psi 
Es = 29000 ksi 
Af = 0.12 in2 
ffu = 144000 psi 
Ef = 17200 ksi 

 
After few iterations, assume cε  = 0.00214 
 

( )
250057000

250071.1
c =ε′  = 0.0015 in./in. 

00214.0*20015.0*6
00214.00015.0*4

1 −
−=β  = 0.818 

2

2

1 0015.0*818.0*3
00214.000214.0*0015.0*3 −=α  = 0.915 
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The multiplier on the beam depth to find the depth of the neutral axis of the cracked 
section is calculated as k = 0.279.  This produces a cracked moment of inertia of Icr = 1907 in4.  
The tensile strain at the deck soffit at the time of FRP installation is calculated to be 417 µε.    

Assuming c = 3.53 in., the strain and stress of steel and FRP reinforcement are 
determined as follows: 

 

000417.0
3.53

3.53 - 18*0.00214εf −=  = 0.00836 in./in. 

14400836.0*17200ff ≤=  = 143.8 ksi 

3.53
3.53 - 16.5*0.00214εs =  = 0.00787 in./in. 

3300787.0*29000fs ≤=  = 33 ksi 

 
These results indicate that the stress in FRP reaches its ultimate strength before the 

concrete.  Therefore, the rupture of FRP reinforcement governs failure. 
The depth of neutral axis is determined as follows: 
 

c = 
12*2500*0.818*0.915

)800,143(0.12)000,33(88.1 +  = 3.53 in. 

 
The moment capacity is determined as follows: 
 

Mn =  ( )
2

53.3*818.00.18(8.143*12.0)
2

53.3*818.05.16(33*88.1 −+− )*1/12 

  Mn =  102 ft-k/ft 
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Design of Surface Bonded Sheets Strengthening  
The sectional and material properties are listed below.  
 

h = 18.5 in. 
b = 12 in. 
d = 16.5 in. 
f�c = 2500 psi 
As = 1.88 in2 
fy = 33000 psi 
Es = 29000 ksi 
Af = 0.0416  in2 
ffu = 550000 psi 
Ef = 33000 ksi 

 
After few iterations, assume cε  = 0.003 
 

( )
250057000

250071.1
c =ε′  = 0.0015 in./in. 

003.0*20015.0*6
003.00015.0*4

1 −
−=β  = 0.833 

2

2

1 0015.0*833.0*3
003.0003.0*0015.0*3 −=α  = 0.900 

 
The multiplier on the beam depth to find the depth of the neutral axis of the cracked 

section is calculated as k = 0.279.  This produces a cracked moment of inertia of Icr = 1907 in4.  
The tensile strain at the deck soffit at the time of FRP installation is calculated to be 417 µε.    

Assuming c = 3.51 in., the strain and stress of steel and FRP reinforcement are 
determined as follows: 

 

000417.0
3.51

3.51 - 18.5*0.003εf −=  = 0.0124 in./in. 

5500.0123*000,33ff ≤=  = 409.3 ksi 

3.51
3.51 - 18.5*0.003εs =  = 0.01162 in./in. 

3301098.0*29000fs ≤=  = 33 ksi 
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These results indicate that failure is governed by concrete crushing.  The depth of neutral axis is 
determined as follows: 

 

c = 
12*2500*0.833*0.900

)300,409(0.0416)000,33(88.1 +  = 3.51 in. 

 
The moment capacity is determined as follows: 
 

Mn =  ( )
2

51.3*833.00.18(3.409*0416.0)
2

51.3*833.05.16(33*88.1 −+− )*1/12 

    
  Mn =  102 ft-k/ft 
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APPENDIX C: 
 

LINEAR FINITE ELEMENT MODELING OF BRIDGE DECKS 
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Skewed plates are often used in modern structures in spite of the mathematical 
complexity involved in their study.  For bridge construction, complex alignment problems in 
bridges are often solved by the use of skew plates.  Analytical methods, with the exemptions of 
the simplest cases, are inadequate for solution of skew plates.  The finite element (FE) method, 
on the other hand, appears to be the most recommended numerical technique. 

  The reported research provided an opportunity to evaluate the reliability of linear 
finite element modeling of the bridge deck to assess deflections under loads in the elastic range.  
With a reliable FE model, it will be possible to address some of the structural engineering 
aspects of modeling a bridge deck.  The experimental results can be used to gage the boundary 
conditions of the deck as well as determining deflections and the magnitude and location of the 
maximum bending moments resulting from different loading configurations.  The following 
reports on the analyses that were conducted as a part of this research program.  It begins with a 
simple modeling of a plate element with a given skew angle and boundary conditions similar to 
the actual bridge deck.  The mesh layout was refined until the model yielded results with 
acceptable error.  The model was benchmarked using two loading conditions, uniform and 
concentrated loading.  Limited amount of literature that addresses plates with a skew angle less 
than 30-degree were sited.  Only one sited reference provided the analytical solution for plates 
with a 15-degree skew (Butalia, 1990).   

A two-dimensional plate with given thickness was used to model the bridge deck.  The 
deck slab was assumed to be simply supported.  Initially, no rotational springs were assumed at 
the supports for the FE model.  FE analysis was achieved using ABAQUS.  However, the 
modeling of a plate structure could be achieved using any FE software package.  The ABAQUS 
software was mainly used due to its availability.  

The element type used for this study is S4R, general-purpose shell element.  This element 
type allows transverse shear deformation.  They use thick shell theory as the shell thickness 
increases and become discrete Kirchhoff thin shell element as the thickness decreases; the 
transverse shear deformation becomes very small as the shell thickness decreases.  This element 
type accounts for finite membrane strains and will allow for change in thickness.  They are 
therefore suitable for large strain analysis involving materials with a nonzero effective Poisson�s 
ratio.   

An initial model was built for a 25 ft by 25 ft (7.6 m by 7.6 m) plate with a thickness of 
1.5 ft (0.46 m) and a 15-degree skew.  To replicate the actual boundary conditions of the deck, 
two opposite edges were simply supported and the other two were free.  Two loading conditions 
were used to benchmark the model: a uniform loading that covered the entire plate and a 
concentrated load at the center of the plate.  The mesh was refined until the FE solution and the 
analytical solution converged and the error was minimized.  Errors within 5% were obtained for 
a mesh of 40 by 40 elements.  This model was therefore considered satisfactory.  The elements 
mesh for this configuration is shown in Figure C.1.  For the skew plate shown in Figure C.2, the 
analytical solution for the bending moment and deflection at the center of the plate under 
uniform loading are given by the following formulas (Butalia, 1990): 

 
22

c 10Qa664.46M −⋅⋅=  (C-1) 

2
4

c 10
D
aQ556.18 −⋅⋅=∆  (C-2) 
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For a concentrated load at the center of the plate, the bending moment and deflection at 
the center of the plate are given by the following formulas: 

 
22

c 10Ca126.45M −⋅⋅=  (C-3) 

3
2

c 10
D
aC811.85 −⋅⋅=∆  (C-4) 

 
The case given in Figure C.2 is identical to the model shown in Figure C.1.  Therefore, 

the analytical solutions given by Equations C-1 through C-4 are valid for comparison.  Table C.1 
presents the moment and deflection at the center of the plate under both loading conditions.  The 
FE solution could be improved further by refining the mesh.  However, such an approach will 
significantly increase the running time for the FE analysis and result in a very minor 
improvement in the error.     

 
 

 
Figure C.1.  The final mesh for FE analysis. 
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2a

2b

β

 
Figure C.2.  Skew plate with a=b. 

 
 
Table C.1.  Comparison of ABAQUS solution and the analytical solution. 

  Uniform Loading Concentrated Loading 
  Q = 1 kips/ft2 (48 kN/m2) C = 300 kips (1334 kN) 

Analysis 
Moment 
k-ft  
(kN-m) 

Deflection 
in.  
(mm) 

Moment 
k-ft  
(kN-m) 

Deflection 
in.  
(mm) Mesh Size 

Analytical 72.91 
(98.87) 

0.01882 
(0.48) 

135.4 
(183.60) 

0.0167 
(0.42) 

ABAQUS 69.91 
(94.80) 

0.01905 
(0.48) 

127.3 
(172.62) 

0.0174 
(0.44) 32 × 32 

Error -4.9% +1.2% -6.0% +4.2% 

ABAQUS 69.65 
(94.45) 

0.0192 
(0.49) 

134.3 
(182.11) 

.0172  
(0.44) 40 × 40 

Error -4.5% +2.0% -1.1% +3.0% 
 
 
The contour sketches for both loading conditions are shown in Figure C.3.  This Figure 

indicates that for a uniform loading condition with a small skew angle of 15 degrees, the beam 
strip approach can reasonably estimate the moment at the center of the span. 

To investigate the influence of bridge skew on its behavior, four concentrated loads were 
applied to the model at locations corresponding to the locations of the hydraulic jacks on the 
bridge deck.  FEM analysis was then carried out for different load magnitudes to determine mid-
span deflection.  In addition, the elastic deflections of the deck were determined for the same 
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loads assuming simply-supported solid concrete slab. The results of these analyses are shown in 
Figure C.4.  This Figure shows that accounting for the skew of the bridge improved the 
theoretical deflections.  However, this did not fully explain the higher initial stiffness of the 
bridge deck observed in the experimental results.  This indicated that other parameters (e.g., end 
fixity) might have contributed to the initial stiffness of the bridge.  

 
 

 
 

 

       (a)  Moment under uniform loading            (b)  Deflection under uniform loading 

    (c)  Moment under concentrated load            (d)  deflection under concentrated load

Figure C.3.  ABAQUS output - moment and deflection contours. 
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Figure C.4.  Comparison of theoretical and experimental elastic deflections 
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APPENDIX D: 
 

DERIVATION OF MOMENT-END FIXITY RELATIONSHIP 
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The moment diagram of a beam is a function of the loading configuration and the 
boundary conditions.  Consider the beam shown in Figure D.1.  The beam is subjected to a 
uniformly distributed load, w, and a concentrated live load, P, at its mid-span.  The beam has end 
fixities, F, represented by two rotational springs at the supports.  To determine the effect of end 
fixity on the moment distribution, the concentrated load and the distributed load will be 
examined separately.   

Concentrated Load.  For a simply supported beam subjected to a concentrated load at 
mid-span, the maximum moment at mid-span, M*c, is given by the following: 

 

4
PLM c* =  (D-1) 

 
As the end fixity changes from zero (no end restraints) to 100% (fully fixed ends), the 

value of the maximum moment varies from PL/4 to PL/8, as shown in Figure D.2.  In addition, at 
any level of fixity, the sum of the absolutes of the positive moment at mid-span and the negative 
moment at the support is equal to the moment M*c, or:  

 

4
PLMMM c

m
c
e

c* =+=  (D-2) 

 
The level of fixity, F, can be related to these moments as follows:  
 

%100*
M
M

 F c
m

c
e=  (D-3) 

 
Which can also be expressed as: 

 

%100*
M

MM
%100*

MM
M

F c
m

c
m

c*

c
e

c*

c
e −

=
−

=  (D-4) 

 
From which, the moment at mid-span can be related to the level of fixity by the following 

expression: 
 

PLK
)1F(4

PL
1F

MM c
m

c*
c
m =

+
=

+
=  (D-5) 

 
In which Kc

m is a moment coefficient expressed as follows:  
 

)1F(4
1K c

m +
=  (D-6) 

 
Similarly the end moments can be related to the level of fixity by the following 

expression: 
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PLK
)1F(4

PLF
1F
FMM c

e

c*
c
e =

+
=

+
=  (D-7) 

 
In which Kc

e is a moment coefficient expressed as follows:  
 

)1F(4
FK c

e +
=  (D-8) 

 
Distributed Load.  For a simply supported beam subjected to distributed load over the 

entire span (see Figure D.3a), the maximum moment at mid-span, M*c, is given by the following: 
 

8
wLM

2
D* =  (D-9) 

 
As the fixity level changes from zero (no end restraints) to 100% (fully fixed restrained), 

the value of the maximum moment will vary from wL2/8 to wL2/24, as shown in Figure D.3b.  In 
addition, at any level of fixity, the sum of the absolutes of the positive moment at mid-span and 
the negative moment at the support is equal to the moment M*D, or:  

 

8
wLMMM

2
D
m

D
e

D* =+=  (D-10) 

 
Considering this variation of mid-span and end moments, the level of fixity can be related 

to these moments by the following: 
 

%100*
2M
M

 F 
D
m

D
e=  (D-11) 

 
From which the following is derived: 
 

%100*
M

)MM(2
%100*

)MM(2
M

F D
m

D
m

D*

D
e

D*

D
e −

=
−

=  (D-12) 

 
The moment at mid-span is related to the level of fixity as follows: 
 

2D
m

2D*
c
m wLK

)1F2(8
wL

1F2
MM =

+
=

+
=  (D-13) 

 
In which KD

m is a parameter expressed as follows: 
 

)1F2(8
1K D

m +
=  (D-14) 
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Similarly, the end moments can be expressed in terms of the fixity as follows: 
 

2c
e

2D*
D
e wLK

)1F(4
FwL

1F2
FM2M =

+
=

+
=  (D-15) 

 
In which the parameter KD

e is expressed as follows: 
 

)1F2(4
FK D

e +
=  (D-16) 

The moments at mid-span and at the supports due to the combined effect of concentrated 
and distributed loads can be determined using superposition as follows: 

 
2D

m
c
m

D
m

c
mm wLKPLKMMM +=+=  (D-17) 

 
2D

e
c
e

D
e

c
ee wLKPLKMMM +=+=  (D-18) 
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Figure D.1.  Superposition of the deck loading. 
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(a)   No Fixity 

(b) Completely Fixed 

P

L

Mc
m = M*c = PL/4

M c e  = 0 
(F = 0%)

Mc
m = PL/8

M c m  = PL/8 
(F = 100%) 

 
Figure D.2.  Moment diagrams for a flexural beam under concentrated load 

                                      with various end conditions. 
 
 
 
 

(a)   No Fixity 

w
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(b) Completely Fixed 

MD
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e  =  wL 2 /12 
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Figure D.3.  Moment diagrams for a flexural beam under distributed load  

                                        with various end conditions. 
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