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APPENDIX A. DESCRIPTION OF THE STATISTICAL METHODS

The deterioration modeling for the project was conducted using two separate methodologies. The Kaplan-
Meier (K-M) method of survival analysis was used to determine the overall characteristics of deterioration
in terms of the time-in-condition rating (TICR) for culverts and bridge components of deck, superstructure,
and substructure. This analysis was used to characterize the reliability of structures in terms of how rapidly
components’ condition rating (CR) decreased over time based on historical inspection records that were

obtained for the project.

Cox regression or Cox proportional hazard was used to assess the effect of independent variables such as
span length, application of deicing chemicals, etc. on bridge components and culverts’ deterioration. This
methodology is optimum for assessing multiple independent variables that might influence the deterioration
of structures, how these variables interact, and which variables have a significant influence on bridge

deterioration.

The contents of this section were summarized in the main body of the report. Additional details on the
modeling methodologies used can be found in Appendix C and validation methodologies for testing the

applicability of the models can be found in Appendix G.

Kaplan-Meier Survival Analysis

Before introducing the statistical methods used in this research in detail, providing the definition of the
terms that are used in subsequent sections of the report would be helpful. The first term is dependent
variable also called an outcome variable defined as “any outcome variable associated with some measure”
such as the CR of a bridge component or culvert recorded at some inspection intervals [1]. The dependent
variable in this research is the time or duration a bridge component or culvert stayed in a CR. For example,
a bridge superstructure is rated in CR 7 for 15 years, therefore this superstructure has a time in condition
rating (TICR) of 15 in CR 7. Say this superstructure then transitioned to CR 6 and stayed in CR 6 for nine
years, then the superstructure has a TICR of 9 in CR 6 and so on. The duration a bridge component or
culvert is in service is called survival time. The survival time can be subdivided into survival time for each

CR since each CR has distinct definition.

The second term is covariate, also called an explanatory variable, defined as “any variable that is
measurable and considered to have a statistical relationship with the dependent variable” [1]. Examples of
the covariates considered in this project and speculated to have relationship with the dependent variable are

snow days, freeze/thaw cycles, Average Daily Traffic (ADT), Average Daily Truck Traffic (ADTT), and
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so on. Covariates are divided into continuous and categorical families. Continuous covariates are those that
can take any numeric values such as ADT or number of snow days in a given year. Categorical covariates
are those that are qualitative without any numeric value such as the location of a bridge in any of seven
districts of Missouri, or the subdivision of bridge superstructures into subgroups such as prestressed

concrete girders and steel girders. Categorical covariates have two or more levels or categories.

The current approach is to perform survival analysis, known in engineering as reliability analysis or time
to failure analysis, employing statistical methods to study the incidence and time of events [2]. One of the
methods for time to failure analysis is the K-M estimator or the product-limit method. The K-M method is
a nonparametric maximum likelihood estimator of time to event data (i.e., component transitioning to a

different CR) and is a common method for treating discontinuous reliability data [2, 3].

Reliability data can be calculated using the K-M estimator by equation (A-1).

. d;
j:tht ]

In equation (A-1), §(t) is the K-M estimator, d ; 1s the number of bridge components for which the event
occurred (transitioned to the lower CR) at time Z;, 1, is the number of bridge components at risk of event

at time #;, and 1, , 1, are the boundary for £ distinct event times. The K-M estimator is accompanied by

statistics such as the mean, median, confidence interval for the median, standard error of the mean, and

hazard rate that can be used to analyze results.

The hazard or failure rate is the number of bridge components per unit of time (year) to transition from one
CR to the lower one (assuming the rate is constant during the year). The hazard rate can be computed
instantaneously, cumulatively, or averaged within a certain time interval [4]. The instantaneous hazard rate

is the number of bridge components that transition to a lower CR in a unit of time (year) and this quantity

varies from one year to the next. This estimate can be computed for i <<t j+1using equation (A-2) in

h(t) = —— (A-2)
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The cumulative failure rate is the integral of the instantaneous hazard rate within the interval of 0 to ¢, and
this quantity could be computed as H(t)= —ln(g’(t)) . Similarly, average failure rate (AFR) could be

computed within any two time-intervals. Since instantaneous failure rate is variable and changes in each
unit of time, the AFR could be used to give a single number to indicate the average number of bridge
components in a given CR per year to transition to the lower CR during the years the data are available for

analysis.

Finally, the K-M estimator can be used to study the effect of time-invariant covariates (explanatory
variables) on bridge performance such as bridge families with different ADT, span length, location, and
environmental conditions, and so on. Or bridges can be grouped based on construction era (1980 — 2000
vs. 2000 — 2017) by time-blocking to study the effect of higher standards and improved construction
material on bridge performance with those of the old standards and lower quality material. Other parameters
described in Objective 3 can also be studied in this way. In this research, the K-M method has been used to
study certain covariates, such as the material of construction for superstructure components (e.g., steel,
PSC, etc.) and deterioration patterns among districts. However, the K-M estimator is not effective for
analyzing the potential interactions between multiple covariates, such as the effect of deicing chemical
application, snowy days, and ADT in combination. For this reason, Cox regression analysis has been used

to study these covariates, as will be described in further sections of the report.

Figure A-1 shows the deterioration model for steel superstructures in Missouri. These data indicate the
TICR in years for bridges with different CRs ranging from 8 to 3. Figure A-1A shows the reliability
(probability) of a component transitioning from one CR to another. The red line in the figure illustrates the
median transition time. For example, for CR 5 (+), 50% of the components will transition to CR 4 after
about 7 years in CR 5. Figure A-1B illustrates the deterioration rate of the component which is the

compliment of the reliability.
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Figure A-1. K-M deterioration models for steel superstructures in Missouri.
The K-M method is only capable of analyzing survival data or the dependent variable alone to describe the
reliability and deterioration patterns for bridge components and culverts. To investigate the effect of
covariates on the reliability or deterioration of the bridge components or culverts another statistical method

called Cox proportional hazard method or Cox regression is used.

Cox Regression Analysis

Cox proportional hazards model or Cox regression is semi-parametric method used for analyzing the effect
of explanatory variable on the survival data [6]. This method is called semi-parametric as it has “a fully
parametric regression structure but leaves their dependence on time unspecified” [7]. The equation for the

Cox regression model is shown in equation (A-3).
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h(t,X,B) = Ao (t) X exp(B,X; + B, X, + ) (A-3)

In equation (A-3), h(t, X, B) is the dependent variable as a function of time and covariates (X, ). The
dependent variable corresponds to the NBI CR assigned by inspectors to each one of the bridge components
(deck, superstructure, and substructure) and culverts. The CR changes as bridges/culverts deteriorate,
typically dropping to the next lower CR. Deterioration of the bridges/culverts and changes in CR are caused
by factors such as salt used for deicing purposes, ADT, snow days, freeze/thaw cycles, and so on. These
parameters believed to affect the deterioration patterns for bridge components and culverts are called
covariates. The dependent variable is the product of the hazard function Ay (t) that “characterizes how the
hazard function changes as a function of time” and the exponentiated linear function of the covariates,

exp(B, X1 + B,X, +-++) [7]. As shown, the hazard is a function of time, but the covariates are time

independent — the covariates do not change with respect to time. The 3’s are unknown parameters computed
based on the available data for each covariate, X,. No assumption is made about the shape of the hazard
function A (t), and that is why Cox regression is called semi-parametric. If all covariates are equal to zero,
then exp(0) equals a value of 1, leaving only the baseline hazard function, Ay(t) . The baseline hazard

function is analogous to the intercept or the constant term in ordinary regression [7].

The parameter estimate for each covariate, 3, is calculated using the method of partial maximum likelihood
for each covariate. One of the properties of the Cox regression is that it can be stratified across variables
not considered as a covariate such as the CR 3 - 8. In the case of stratified Cox regression, a single parameter
is estimated by pooling the information from all strata — one parameter is estimated for CRs 3 — 8 of bridge
components or culverts. Hence, as will be shown later, sample size in a given CR, especially in CR 3, may

negatively affect the parameter estimate.

The hazard ratio for two subjects (bridges or culverts) with covariate xo and x; using equation (A-3) only
depends on (X,p) as the hazard functions cancels out each other as shown in equation (A-4). In this way,

the hazard ratio

exp(B,X1)

AR P) = exp(ByXo)

(A-4)

can be used to compare the effect of one covariate to another. For example, this could be used to compare

bridge performance in one district as compared to a different district.
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Model Development

Before embarking to model building for Cox proportional hazard method, the covariates were studied
together to determine if there is any collinearity or multicollinearity, which is the case “in many
nonexperimental situations” [8]. Collinearity or multicollinearity is defined as the correlation between the
explanatory variables (i.e., covariates) available for model-building and those that are left out or neglected
[8]. Multicollinearity between the explanatory variables poses problems that need to be addressed as

outlined below [8, 9].

1. Presence of multicollinearity does not “inhibit our ability to obtain good fit nor does it tend to
affect inference about the mean responses or predictions of new observations, provided these
inferences are made within the region of observations.”

2. “The estimated regression coefficients tend to vary widely from one sample to the next when the
predictor variables are highly correlated. As a result, only imprecise information may be available
about the individual true regression coefficients.”

3. The interpretation of the regression coefficients to find out the effect of an explanatory variable
on the response variable by increasing one covariate by one unit and holding all other covariates
constant “is not fully applicable”. For example, to study the effect of bridge deterioration based
on the number of snow days and the amount of salt used for deicing purposes, it is unrealistic to
increase one covariate and keep the other one constant, because increasing one covariate
inherently means the increase in use of the other covariate. Or ADTT is recorded as a percentage
of ADT in the SI&A guide and the increase in ADT would cause the ADTT to increase
proportionally.

4. “A regression coefficient does not reflect any inherent effect of the particular predictor variable
on the response variable, but only a marginal or partial effect, given whatever other predictor
variables are included in the model. Or correlated covariates “contains much of the same
information”.

5. The parameter estimate for the covariate is not significant even though the variable should be

highly correlated with the response variable, the TICR.

Addition or deletion of a covariate changes other regression coefficients “dramatically.”

7. The sign of the regression coefficient is the opposite of the reality or prior experience.

>

There are two ways to check for collinearity or multicollinearity. As an informal method, the simple
correlation between the covariates using the pairwise correlation is helpful, but to unearth multicollinearity
among several covariates, variance inflation factor (VIF) is effective. VIF is a measure of “how much the
variance of an estimated regression coefficient increases” if the covariates are correlated [9]. The VIF for
uncorrelated explanatory variables is equal to 1, and a greater VIF shows multicollinearity among predictor
variables. There are different recommendations in the literature about ranking the severity of VIF. VIF of
less than 4 is considered moderate and VIF between 4 to 10 is considered high. A VIF greater than 10

indicates that the “regression coefficients are poorly estimated due to multicollinearity” [8-10].
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Table A-1 contains the VIF for the continuous covariates that would be used to build Cox regression model
for cast-in-place (CIP) decks. In this table, each covariate is regressed on all other continuous covariates.
Each column lists the covariate number against which each of the numbered covariates are regressed. For
example, the first column lists the VIF result for the case where age in TICR is regressed on all other
covariates. As shown in Table A-1, the VIF for the structure length is low (1.97) and the VIF for ADT and
ADTT are high (close to 10). The VIF for the freeze/thaw and snow is about 2.5 or greater when both of
the covariates are together, but when either one of the covariates are removed from the model - as shown

in column 4 and 5 — the VIF is reduced for the other covariate, to a value of ~1.1 in this case.

Table A-1. Variance Inflation Factor (VIF) for continuous covariates for CIP decks.

Co;t(t:ate Covariate Name 1 2 3 4 5 6 7 8

1 Age in TICR 1.25 1.23 1.14 1.22 1.25 1.25 1.22
2 Structure length (ft.) 1.97 1.04 1.97 1.97 1.97 1.97 1.97
3 Max. span length (ft.) 2.01 1.07 2.04 2.04 2.04 2.04 2.03
4 Freeze/thaw (days/year) 2.54 2.78 2.78 1.11 2.78 2.79 2.62
5 Snow (days/year) 2.75 2.82 2.82 1.13 2.80 2.82 2.44
6 ADT 9.62 9.63 9.63 9.61 9.57 1.30 9.13
7 ADTT 9.18 9.19 9.20 9.20 9.20 1.24 9.14
8 Salt (tons/lane miles) 1.41 1.45 1.44 1.36 1.26 1.38 | 1.44

The following are the remedial actions recommended in the literature for lessening the effects of
multicollinearity [8-10].
1. Drop one or more predictors from the regression model to minimize the effect of
multicollinearity.
2. “Restrict the use of the fitted regression model to inferences for values of the predictor variables
that follow the same pattern of multicollinearity.”
3. Use centered data for covariates — subtract the mean of a covariate from all observations —
included in the analysis.
4. Model the response variable on different explanatory variables of the same data set.

5. Use Principal Component Analysis (PCA) to select the number of covariates that explain the
majority of the error for the response variable.

In this report a combination of recommendations 1 and 4 are employed to select the explanatory variables.
For example, a Cox regression model is built by including ADT and another Cox regression is built by
including ADTT, or similarly, two separate Cox regressions are built for the covariates of maximum span
length and structure length. Recommendation 1 would be applied using the VIF criterion for correlated
covariates. Since the VIF is calculated by regressing one explanatory variable on all other covariates and it
is not related to the response variable and “the functional form of the model for the dependent variable is

irrelevant to the estimation of collinearity,” it is applicable to Cox regression as well [11].
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Based on recommendation 1, dropping either one of the correlated covariates would lessen the effect of
multicollinearity, and based on recommendation 4, we can build two models with different covariates of

the same effect on the response variable, TICR.

As mentioned before, partial maximum likelihood method is used to estimate the parameters associated
with each of the covariates considered for each bridge component or culverts. The maximum likelihood
estimate (L) shows “the extent to which the data are fitted by a particular model” and for a model the larger

this statistic “the better is the agreement between the model and the observed data” [5].

1p) = | [ ) (A-5)

j=1 ZlER(t(D) exp (B x,)

In equation (A-5), x is the vector of the covariates and 3 is the parameter estimate for the covariates. The
summation in the denominator is the sum of the values of exp (§ x;) over all bridges at risk at time tii»
and R(t(;)) is the bridge set at risk of transitioning to the lower CR. As shown in equation (A-5), the
maximum likelihood will be smaller than unity as it is the product of several conditional probabilities.
Consequently, “-2log L will always be positive, and for a given data set, the smaller the value of -2log L,

the better the model.” [5]

Table C-1 contains the statistic -2log L, and the likelihood ratio test which compares the model with a

covariate with the null model using equation (A-6).

L
Likelihood ratio = —ZlogL—1 (A-6)
2

In equation (A-6), L1 is the null model and L2 is the model with the covariate. The likelihood ratio test is
asymptotically a chi-square distribution under the null hypothesis that the coefficient of the added
covariate(s) is zero. The degree of freedom (DOF) for this distribution is equal to the difference between
the number of covariates for the two models. If the value of this ratio is not large, the two models could be
judged to be the same, but if the ratio is large, it indicates that the addition of the new covariate is needed
in the model. The likelihood ratio test is compared with the theoretical chi-squared distribution with the
same number of DOF and a predefined decision rule (say 5%). If the likelihood ratio test is larger than the
critical value of the theoretical chi-squared distribution or alternatively the probability value associated with
the likelihood ratio test is smaller than the predefined decision rule value, it shows that the extra covariate
is needed in the model. For the cases where each covariate is added to the model one by one, the null model

is compared with the new model with only one covariate (DOF=1) and the critical value for chi-square
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distribution with one DOF is 3.84. Therefore, any likelihood ratio greater than 3.84 or any probability value
smaller than the 0.05 indicates that the added covariate is statistically significant and needed in the model.
Similarly, any value smaller than 3.84 indicates that the covariate is not significant when considered

individually but may be significant when considered along with other covariates.

Model development recommended by Collett (and outlined below) was followed for developing the model

for bridge components and culverts and was supplemented by automatic variable selection [5].

1. Each covariate is added to the Cox regression independently, and its effect on deterioration is
calculated by comparing the likelihood ratio test of the Cox regression when the covariate is
included as compared with the null Cox model without the covariate in the model. In this step the
statistical significance of each covariates applied independently is assessed.

2. All covariates that were statistically significant at 15% in step 1 are modeled together. Some
covariates may cease their significance in the presence of other covariates.

3. Covariates that are no longer significant in step 2 are removed from the model one at a time, and
their effect is calculated by comparing the log-likelihood of the full model — all covariates from
step 2 included — to the log-likelihood from the model with the insignificant covariate discarded.
If the discarded covariate does not affect the likelihood ratio test, it is discarded from the model.

4. Covariates that were not significant independently in step 1 are added to the model from step 3
one at a time to check if any covariate become significant in the presence of other covariates.

5. Higher order terms of the covariates (x?, x*, ...) and interaction terms are considered between the
explanatory variables from step 3. The model from this step would be used further to verify
model assumptions, goodness of fit test, and detecting outliers (if any).

Model Assumptions

There are two assumptions for the Cox regression model shown in equation (A-3). 1) the proportional

hazard assumption — the hazards are not changing with time and 2) the explanatory variables are modeled
with the correct functional form — x, x2, log(x), or vx . Tests are available to verify the assumptions and to

take corrective actions in case of any violation. These tests are discussed in the following paragraphs.

Proportional Hazard Assumption

The proportional hazard (PH) assumption states that the covariates are not time dependent — the hazard is
the same if a bridge’s TICR changes from 10 to 15 or from 30 to 35, i.e., no time dependence. There are
several methods to check continuous covariates for the PH assumption: graphical, goodness-of-fit (GOF),
Schoenfeld residuals, and time-dependent variable approaches [6]. The graphical and GOF has some
drawbacks related to the number of observations and the censoring, but Schoenfeld residuals and the time-
dependent variable approach is preferred [2]. For example, to test a continuous covariate for the PH
assumption using Schoenfeld residuals, the Schoenfeld residuals are computed for continuous covariates
included in the model and plotted as the Schoenfeld residual against the function of time [12]. The time

could be a simple function such as (t) where it corresponds to TICR for bridge components and culverts or
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other functions of the time such as log (TICR). Fitting a curve on the scatter plot of the Schoenfeld residuals
would reveal if the PH holds or not. A flat smooth curve near zero would suggest that the PH assumption

is valid for the covariate.

Another way of using the Schoenfeld residuals is to calculate its correlation coefficient with the function
of time such as TICR, log (TICR), or TICR? [2]. In this case, the assumption is that the Schoenfeld residuals
are independent of time, therefore there should not be a statistically significant correlation coefficient. Here
the null hypothesis is that there is no correlation between the function of time and the Schoenfeld residuals
calculated for each continuous covariate at a specified significance level, say 5%. Hence, the alternate
hypothesis is that correlation exists between the Schoenfeld residuals and the function of time. Thus, any
correlation coefficient for a covariate smaller than 5% indicates that the PH does not hold for that covariate

and correction measures should be employed.

The PH assumption for categorical covariates is assessed using the K-M curve constructed for all the levels
of the covariate included in the model [12]. For the PH assumption for the categorical covariates to hold,
the levels of the covariates should not cross each other, look parallel, and be of a similar shape [12]. A

different way than the graphical test would be to request test statistics across all the levels.

Covariates Functional Form

In the Cox regression model shown in equation (A-3), the covariates are assumed to be related to the hazard
function as a simple linear function. This assumption should be verified before interpretating the Cox
regression results. Martingale residuals is one of the most common ways to check the functional form of
the continuous covariates [13]. “The residual can be interpreted as the difference over time of the observed
number of events minus the expected number of events under the assumed Cox model” [13]. To find the
functional form of a continuous covariate, the Cox model is fitted to all other covariates in the model except
the covariate for which the functional form is to be determined. The Martingale residual is then plotted
against the values of the covariate not included in the model and a smoothed curve is fitted to the scatter
plot. The shape of the smoothed curve defines the actual functional form of the covariate to be included in
the model [13]. Another common practice is to fit a null model —a model without any covariate - and output
the Martingale residuals against each of the continues covariates identified for the model [12]. A smoothed
curve fitted on the Martingale residuals indicate the functional form of the covariate to be used for building
the model. A straight line or nearly straight line indicates that a linear relationship, x, hold between the

independent variable and the covariate [12].
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Detecting Influential Observations and Outliers

Detecting influential observations on the parameter estimates () and outliers are two issues to be studied
once a Cox regression model is fit. To detect the influence of each observation on a parameter estimate “is
to compare the estimate  one obtains by estimating B from all the data, to the estimate B obtained from
the data with the given observation deleted from the sample” [13]. To determine the influence of an
observation, B - B, also known as dfbeta, dfp, is calculated and if the value is close to zero, there is no
influence from observation j on the parameter estimate, but if the value is large, it suggests an influence on
the parameter estimate from observation j [13]. Another way to check for influence of individual
observation is to compare dff with the parameter estimate. Influential observations could be detected by
the score residuals, where it approximates b - b, and a plot of this residual against each covariate Xj would
reveal the effect of the j™ observation on the covariate k [13]. A positive value of the dfp, indicates that the
exclusion of an observation reduces the parameter estimate and this implies that inclusion of an observation
increases the parameter estimate [12]. In other words, dff is the measurement of the effect of an observation

on the parameter estimate when the observation is included in the model [12].

Assessment of the Overall Model Fit

There may be interest on the assessment of influential observations and outliers on parameter estimate for
each covariate included in the model, but also on the overall fit of the model. To assess the effect of
observations on the overall fit of the model, likelihood displacement could be generated from the model
and then plotted against TICR for bridge components and culverts [12]. “The likelihood displacement score
quantifies how much the likelihood of the model, which is affected by all coefficients, changes when the

observation is left out.” [12]

Predictive Accuracy of the Cox Regression

“The predictive accuracy of a statistical model can be measured by the agreement between observed and
predicted outcome.” [14] In Cox regression, concordance statistics, also called C-statistic, is one measure
of accuracy. “The concept underlying concordance is that a subject who experiences a particular outcome
has a higher predicted probability of that outcome than a subject who does not experience the outcome. The
C-statistic can be calculated as the proportion of pairs of subjects whose observed and predicted outcomes

agree (are concordant) among all possible pairs in which one subject experiences the outcome of interest
and the other one does not. The number of pairs is calculated using (g), where n is the number of

observations in the data set. The higher the C-statistic, the better the model can discriminate between
subjects who do experience the outcome of interest and subjects who do not.” [14] Harrell’s C-statistic is

one of several concordance formulations that are used for survival analysis. The concordance statistics can
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be calculated by using equation (A-7) where n.is the number of concordance observations, 7, is the number
of tied observations (same time events or identical covariates), and ns is the number of discordant

observations.

C= n.+ 0.5 xXn;
B ne,+ng+n (A-7)

Another way of measuring the predictive accuracy of Cox regression is the receiver operator characteristic
(ROC) and area under the ROC curve (AUC). “Time-dependent ROC curves and AUC functions
characterize how well the fitted model can distinguish between subjects who experience an event from
subjects who are event-free. Whereas C-statistics provide overall measures of predictive accuracy, time-
dependent ROC curves and AUC functions summarize the predictive accuracy at specific times. In practice,

it is common to use several time points within the support of the observed event times. ” [14]
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APPENDIX B. SUPERSTRUCTURE TYPES LISTED IN THE NBI

Materials and Type of Construction

Structure Kind and Structure Type

Structure kind (043A) and structure type (043B) variables describe the materials of construction (e.g., steel,
reinforced concrete, prestressed concrete, etc.) and construction type (e.g., simply supported, continuous,
truss, girder, etc.). The combination of these two items was used to identify families of bridges with similar

material and construction type for analysis.

Table B-1 lists the number and kinds of state-owned bridge families. There were 56 different combinations
of structure type and kind found in the inventory. The most common structure overall was found to be a
continuous concrete culvert with 3,310 structures. The most common bridge types were bridges with steel
superstructures, either continuous (2,645) or simple span (1,602), followed by prestressed concrete

continuous structures (1,262).

The three most common materials for bridge superstructure construction were steel, reinforced concrete
(RC), and prestressed concrete (PSC). Considering all structure types for each of these materials, there were

4,836 steel bridge, 5,558 RC bridges and culverts and 2,601 prestressed PSC bridges.

It should be noted that the table includes all of the structures considered in the research, which included
NBI records that spanned 37 yrs. The values shown in the table are not the current number of bridge or
culverts, but rather the number of bridges and culverts included in the NBI over the 37 yrs addressed through

the research.
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Table B-1. Table list of different structures by type and kind.

SI&A items L. SI&A items L.
A | 43B SI&A description No. FEVN 138 SI&A description No.
2 19 | Concrete continuous culvert 3,310 2 5 Concrete continuous box beam or girder - multiple 12
4 2 Steel continuous stringer/multi beam girder 2,645 8 19 | Masonry culvert 9
3 2 Steel stringer/multi beam girder 1,602 3 12 | Steel arch — thru 7
6 ) Prestregsed concrete continuous stringer/multi 1,262 3 9 Steel truss — deck 6
beam girder

1 4 Concrete tee beam 790 6 1 Prestressed concrete continuous slab 6

2 1 Concrete continuous slab 767 1 6 Concrete box beam or girders - single or spread 5

3 10 | Steel truss — thru 423 4 14 Steel continuous stayed girder 5

5 5 Prestressed concrete box beam or girder - multiple 384 2 7 Concrete continuous frame (except frame culverts) 4

6 4 Prestressed concrete continuous tee beam 344 3 0 Steel other 4

1 1 Concrete slab 247 0 2 Other stringer stringer/multi-beam or girder 3

5 6 Prestressed concrete box beam or girder — single 201 4 12 Steel continuous arch — thru 3
Concrete continuous box beam or girders - single Steel continuous box beam or girders - single or

2 6 193 4 6 3
or spread spread

5 ) P'rejtressed concrete stringer/multiple-beam or 174 | 5 Concrete box beam or girders - multiple )
girder

5 4 Prestressed concrete tee beam 169 2 2 Concrete continuous stringer/multi-beam or girder 2

1 22 | Concrete channel beam 120 4 19 | Steel continuous culvert (includes frame culverts) 2

4 3 Steel continuous girder and floor beam system 44 4 7 Steel continuous frame (except frame culverts) 2

1 11 | Concrete arch — deck 34 4 9 Steel continuous truss — deck 2

7 2 Timber stringer/multi-beam or girder 34 0 19 | Other culvert (includes frame culverts) 1

3 19 | Steel culverts 33 1 3 Concrete girder and floor beam system 1

4 10 | Steel continuous truss — thru 28 2 12 Concrete continuous arch - thru 1
Prestressed concrete continuous box beam or Steel slab

6 6 . . 26 3 1 1
girder — single

3 3 Steel girder and floor beam system 25 3 13 Steel suspension 1

1 7 Concrete frame (except frame culverts) 20 3 5 Steel box beam or girders - multiple 1

2 4 Concrete continuous tee beam 20 3 7 Steel frame (except frame culverts) 1

2 11 | Concrete continuous arch - deck 18 4 13 Steel continuous suspension 1

5 1 Prestressed concrete slab 18 6 21 Prestressed concrete continuous segmental box girder 1
Prestressed concrete continuous box beam or Timber other

6 5 . . 16 7 0 1
girder — multiple

1 2 Concrete stringer/multi-beam or girder 12 8 11 Masonry arch — deck 1

Total number of bridges and culverts 13,047
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APPENDIX C. DATA ANALYSIS

This appendix includes fundamental data from the Cox regression analysis for structures. The data in this
section supplements the main body of the report. Data in this appendix is primarily intended for researchers

interesting in the modeling methodologies used in this research.

Reliability of CIP Bridge Decks

The -2log L and the likelihood ratio for the covariates of the Cox regression model for CIP decks is shown
in Table C-1. As shown in Table C-1, except for the ADT and ADTT, all other covariates are statistically
significant when examined individually. It was found that ADT and ADTT did not have a statistically

significant effect on the deterioration of CIP decks.

Table C-1. Table showing maximum likelihood estimate for CIP deck covariates.

Var. No. Variables in model -2log L Likelihood ratio | Result

0 None 242,492.64 Null model
1 Age in TICR 242,446.15 46.49 Significant
2 Structure length (ft.) 242,479.71 13.99 Significant
3 Maximum span length (ft.) 242,435.75 56.89 Significant
4 Freeze/thaw (days/year) 242,455.34 37.30 Significant
5 Snow (days/year) 242,463.27 29.36 Significant
7 Salt (tons/lane miles) 242,419.31 73.33 Significant
8 ADT 242,492.25 0.39 Not signi.

9 ADTT 242,492 .41 0.23 Not signi.

10 District 242,398.57 94.07 Significant
11 Region 242,442 91 49.73 Significant
12 Superstructure type 242,228.75 263.89 Significant

Table C-2 lists the effect of covariates on the performance of the CIP decks. This table presents the final
results where all modeling steps have been completed and all assumptions and diagnosis were met. The
first column lists the name of the covariate, the second column lists the parameter estimate (5) for each
covariate, the fourth column contains the standard error for the parameter estimate. The table also shows
the chi-square value and probability value (p-value) comparing the chi-square from the fifth column to the
critical value of theoretical chi-square value (3.84 for p-value of 0.05) for the single degree of freedom
model. The p-value indicates if the covariates are statistically significant by recording the likelihood the
chi-squared value exceeds the theoretical values simply by chance. Smaller values in this column indicate
that the occurrence was not by chance but rather was statistically significant. Values greater than 0.5

indicate the covariate was found not to be statistically significant.

In Table C-2, the first five rows record the results for the categorical covariate superstructure type. The
superstructure type steel cont. girders is not listed but rather acts as the reference for the other combinations

of deck and superstructure type. Each of the five superstructure types shown have a parameter estimate and
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associated standard error that was used to construct the confidence interval for the parameter estimate. The
last column for the first five rows shows that the performance of the CIP decks on different superstructure

types is different as indicated by the p-value less than 0.05 or 5%.

Row 6 lists the parameter of the age in TICR and rows 7-11 contain the interaction of age in TICR with the
different superstructure types. The interaction of age in TICR with superstructure types demonstrates that
age affects the performance of the CIP decks on different superstructure types differently for most
superstructure types. The only exception is CIP decks on the PSC continuous girders where the p-value is
greater than 0.05. This shows that the performance of the CIP deck on PSC continuous girders may not be
statistically different than CIP deck on the reference superstructure type — steel continuous girders.
However, these data indicate that there is a statistical difference between the effect of age on deterioration
of bridge decks (other than for PSC); the effect is relatively small, and the negative value for the parameter
estimate indicates that the performance is better as compared to compared to CIP decks on continuous steel

superstructures.

Table C-2. Table showing Cox regression model output for CIP decks.

No. Covariate PztrameteAr BETOENR Chi-square| P-value
estimate (f)| error
1 RCC slabs 0.197 0.049 15.83 <.0001
2 CIP deck on RCC beams 0.336 0.061 30.40 <.0001
3 CIP deck on steel girders 0.252 0.057 19.61 <.0001
4 CIP deck on PSC cont. girders 0.110 0.046 5.592 0.018
5 CIP deck on PSC box beams 0.900 0.058 239.2 <.0001
6 Age in TICR 0.022 0.001 391.7 <.0001
7 Age in TICR*RCC slabs -0.015 0.001 101.1 <.0001
8 Age in TICR*CIP deck on RCC beams -0.021 0.002 194.3 <.0001
9 Age in TICR*CIP deck on steel girders -0.013 0.001 87.79 <.0001
10 | Age in TICR*CIP deck on PSC cont. girders -0.002 0.003 0.403 0.525
11 Age in TICR*CIP deck on PSC box beams -0.028 0.004 44.34 <.0001

Table C-3. contains the effect of district on the performance of the CIP decks. The northeast (NE) district
is not listed in the table because this categorical covariate was selected as the reference. From the p-value
column it is evident that CIP decks located in different districts perform differently in most cases. The
exception is the for the KC district that has a p-value of 0.059, which is close to 0.05. It should be noted the
choosing the p-value of 0.05 is a subjective choice that is the normal convention for this type of analysis.
A different value could be selected. For example, the 0.05 p-value indicates a 1 in 20 chance that differences
could be the result of chance and therefore not statistically significant. If a p-value of 0.10 was chosen, it
would mean that there is a 1 in 10 chance the difference could be the result of chance, a less rigorous
threshold. Consequently, these data don’t indicate there wasn’t any difference at all between the KC district
and the NE district, only that the difference did not meet the statistical test at the level being used in the

analysis.
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Row 7 in Table C-3. lists the effect of salt on the performance of the CIP decks and rows list the interaction
of salt with each of the six levels of the district covariates, with the NE district again acting as the reference.
The p-value column for rows 8-13 indicates that the effect of salt in NW, CD, and SW is different than the
effect of salt in NE as demonstrated by the smaller p-values. In contrast, the effect of salt in KS, SL, and
SE is not different than the effect of salt in NE as shown by the p-values greater than 0.05.

Table C-3. Table showing Cox regression analysis for districts and the effect of different levels of
salt application.

No. Covariate szrameteAr BT Chi-square| P-value
estimate (f)| error
1 NW -1.388 0.538 6.643 0.010
2 KC -1.078 0.572 3.558 0.059
3 CD -2.567 0.475 29.17 <.0001
4 SL -1.188 0.454 6.844 0.008
5 SW -2.365 0.475 24.78 <.0001
6 SE 1.320 0.621 4.511 0.033
7 Salt (tons/lane miles) -0.108 0.132 0.667 0.414
8 Salt*NW 0.546 0.193 8.000 0.005
9 Salt*KC 0.212 0.161 1.732 0.188
10 Salt*CD 1.028 0.171 35.93 <.0001
11 Salt*SL 0.193 0.134 2.072 0.150
12 Salt*SW 1.240 0.191 42.16 <.0001
13 Salt*SE -0.547 0.426 1.646 0.199

Table C-4 reports data on the effect of freeze/thaw cycles on the performance of the CIP decks. The
parameter estimate for this covariate is negative, which indicates that increasing the number of freeze/thaw
cycles reduces the hazard of deterioration. This result is not consistent with most experience and research
that indicates increasing freeze/thaw cycles results in increased deterioration over time [15]. The increased
deterioration would be expected to increase the hazard of deterioration, but the results showed the opposite.
Rows 2-5 show the statistically significant interaction effect of salt and freeze/thaw cycles, snow, and the
interaction effect of snow and salt. The interaction of snow and salt together also has a negative parameter
estimate, indicating that when these covariates were considered together, the effect was to reduce the hazard

of damage.
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Table C-4. Table showing the results of the Cox regression for covariates of freeze/thaw, salt, and
snow days.

No. Covariate PztrameteAr BETOENR Chi-square| P-value
estimate (/)| error
1 Freeze/thaw (days/year) -0.062 0.004 198.0 <.0001
2 Salt * freeze/thaw 0.010 0.001 50.12 <.0001
3 Snow (days/year) 0.070 0.006 130.9 <.0001
4 Salt*snow -0.012 0.002 31.50 <.0001

Statistical Data

This section documents that data on which the statistical analysis is based. These data are provided to
document the project data for the record, for future researchers, and for those looking for additional insight
into the characteristic of the dataset on which the analysis is based. Similar sections documenting the dataset

are included in the report for superstructures, substructures, and culverts.

Table C-5 includes statistical data for the covariates used in the analysis for CIP decks on different types
of superstructures. This includes the covariate name, the count or number of instances that were available
for analysis, and the general statistics for each covariate. The general statistics provide an overview of the
typical values and variation in the data used in the analysis. This includes the median value where 50% of
the population is above and 50% below the median value, and the mean (average). The mode records the
most frequently occurring value. Table C-6 shows general statistics for salt application. Other tables in this

appendix address the covariate values for superstructures, substructures, and culverts.
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Table C-5. Table showing general statistics for continuous covariates for CIP decks.

Superstructure

General statistics (year)

Covariate name Count
type Median| Mode | Mean | STD
Age 50 54 47 25.3
t‘;g S(lrl‘;g;g‘tirlsztsu‘i Structure length (ft.) £93) 176 113 234 289.5
type) Maximum span length (ft.) ’ 60 60 674 37.2
Condition rating 6 7 6.2 1.2
Age 64 56 65.4 15.4
CIP decks on steel | Maximum span length (ft.) 1,564 41 49 43.2 21.1
simple girders Structure length (ft.) ’ 107 95 125.6 105.6
Condition rating 6 6 5.6 1.2
Age 48 50 443 15.1
CIP decks on steel | Maximum span length (ft.) 2626 85 70 94.2 43.7
cont. girders Structure length (ft.) 253 264 356.3 424.2
Condition rating 7 7 6.4 1.1
Age 23 24 243 12.7
CIP decks on PSC | Maximum span length (ft.) 1.685 66 90 68.4 18.0
cont. girders Structure length (ft) ’ 196 146 242.5 209.0
Condition rating 7 7 7.2 0.6
Age 9 8 17.1 15.1
CIP decks on PSC | Maximum span length (ft.) 649 69 60 75 33.6
box beams Structure length (ft.) 151 106 218.1 227.7
Condition rating 7 7 7 0.7
Age 54 51 554 37
Maximum span length (ft.) 46 56 44 18.4
RCC slabs Structure length (ft.) 989 135 67 144 132
Condition rating 6 6 6.2 1
Age 65 58 67 16.4
. Maximum span length (ft.) 47 43 523 22.2
RCC girders Structure length (ft.) 1,019 138 128 1693 | 1287
Condition rating 6 6 5.5 1.2

Table C-6. Table showing general statistics for salt application.

Covariate Covariate Count General statistics (year)
NW 9,810 2.9 2.0 2.7 0.8
NE 11,385 2.2 4.4 2.9 1.2
KC 7,931 4.3 4.9 4.2 1.3
Salt (tons/lane mile) CD 11,568 2.9 4.4 2.6 1.1
SL 5,951 5.0 10 5.1 2.2
SW 16,206 2.2 2.8 2.1 0.8
SE 14,697 1.2 2.2 1.2 0.4

Table C-7 shows additional background data used for the analysis of CIP decks on different types of
superstructures. These data illustrate the number of instances for each CR for each superstructure type. The
table also records the SI&A items 43A and 43B for the superstructure type and its name. The number of

instances for each CR for each superstructure type provides information on the size of the dataset used in

calculating the TICR and other analysis in the report.




1 Table C-7. Number of different superstructure types with CIP decks in CR 3 - 8.

SI&A . . SI&A # of bridges/culverts in
items SI&A description # of bridges/culverts in each CR items SI&A description each CR
43A | 43B 3 4 5 6 7 8 [ 43A| 43B 3(4|5/6| 7|8
4 ) St. cont. stringer/multi beam girder 324 | 528 | 856 | 1,629 | 2,039 1072 2 5 RC cont. b;)gu?teizlll; or girder - alglel 3l alo
3 2 St stringer/multi-beam girder 390 | 629 | 883 | 1,047 | 700 | 235 | 3 12 ST — thru Ol 1] 1] 2|51
1 4 RC tee beam 155| 279 | 416 | 461 | 249 | 51 3 9 ST truss — deck 20103201
2 1 RC cont. slab 31 83 | 202 | 537 | 532 | 269 6 1 PSC continuous slab 0]0j0]2]1]2
St. truss — thru RC box beam or girders - single or
3 10 102 | 149 | 202 | 222 | 105 18 1 6 spread 010 1]|5|5]0
6 2 PSC cont. stringer/multi beam girder 5 6 15 132 | 874 | 638 | 4 14 ST cont. stayed girder 0] 0]J]O0JO0]3]1
5 4 PSC tee beam 5 5 4 6 66 3 5 7 RC cont. frame (except frame 3111301210
culverts)
1 22 RC channel beam 16 | 55| 71 64 37 10 3 0 ST other 0]l 1]0]1]0]O
’ 6 RC cont. box beam or girders - single or 20| 50| 97 150 | 111 4 0 ’ Other stringer str'inger/multi-beam ol ol olololol2
spread girder
6 4 PSC cont. tee beam 2 8 7 27 235 95 4 12 ST cont. arch — thru 1] 1[0 1]2]1
1 | RC slab 38 | 60 | 87 120 67 13 4 6 ST cont. box beam or girders - single ol 1lolol2la
or spread
5 6 PSC box beam or girder — single 0 1 1 20 64 65 1 5 RC box beam or girders - multiple 0[] 0][]0]J]0]lO]O
5 2 PSC stringer / multiple-beam or girder 4 1 4 22 85 72 2 2 | RC cont. stringer/multi-beamorgirder| 1| 0] 0| 0| 1| 1
5 5 PSC box beam or girder - multiple 0 3 3 4 16 8 4 7 | ST cont. frame (except frame culverts)| 0 | 1| 1| 1| 2| 2
4 3 St cont. girder and floor beam system 2 7 14 27 38 17 4 9 ST cont. truss — deck 1] 1]1[(1]0]0
1 11 RC —deck 4 6 12 13 8 0 1 3 RC girder and floor beam system 0| 1]0]0lO0]O
3 3 St girder and floor beam system 6 12 | 15 12 4 1 2 12 RC cont. arch - thru 1{]0[0/]0]0]O
1 7 RC frame (except frame culverts) 2 4 9 9 11 0 3 1 ST slab 0[] 0]J]OjJO|T1]O
2 4 RC continuous tee beam 3 12 10 10 6 2 3 13 ST suspension 0[] 0] 0)J0[O0]O
2 11 RC continuous arch - deck 3 5 9 12 3 1 3 5 ST box beam or girders - multiple 0[] 0jJ]OJO]1]1
5 1 Prestressed concrete slab 0 7 6 5 2 1 3 7 ST frame (except frame culverts) 0[] 0][O]1]O0]O
7 2 TR stringer/multi-beam or girder 0 1 3 2 0 0 4 13 ST cont. suspension 0/0J]0]1][0]0O
4 10 ST cont. truss — thru 6 9 9 15 12 8 6 | 21 PSC cont. segmental box girder 0[] 0]J]OjJO|T1]O
6 6 PSC cont. box beam or girder — single 0 0 0 0 9 12 7 0 TR other 0[1]0]J]0[0]O
6 5 PSC continuous boy.g beam or girder — 0 | | ) 12 5 3 11 Masonry arch — deck ololololilo
multiple
1 2 RC stringer / multi-beam or girder 1 2 2 5 5 0
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Reliability Analysis for Superstructures

This section of the report documents results of statistical analysis for different bridge superstructure types.

Table C-8 shows different types of superstructures, their count, and their combination for analysis. Table

C-9 shows the effect of covariates on the performance of superstructures when assessed individually.

Table C-8. Table showing different types of superstructures, their count, and their combination for
analysis.

SI&A items Combined
SI&A description Count | Analysis data set
43A | 43B . Y count
4 2 Steel continuous stringer/multi beam girder 2,645 Steel cont. girders 2,645
3 2 Steel stringer/multi beam girder 1,602 Steel simple girders 1,602
Prestressed concrete stringer/multiple-beam or
> 2 girder 174
Prestressed concrete continuous stringer/multi PSC cont. girders 1,436
6 2 . 1,262
beam girder
1 1 Concrete slab 247
2 1 Concrete continuous slab 767 RCC slabs 1,014
1 4 Concrete tee beam 790
2 4 Concrete continuous tee beam 20
1 6 Concrete box beam or girders - single or spread 5
1 5 Concrete box beam or girders - mul.tiple ' 2 RCC girders 1,022
Concrete continuous box beam or girders - single
2 6 193
or spread
Concrete continuous box beam or girder -
2 5 . 12
multiple
5 4 Prestressed concrete tee beam 169
6 4 Prestressed concrete continuous tee beam 344
5 5 Prest.ressed concrete box beam or girder - 384
multiple
5 6 Prestressed concrete box beam or girder — single 201 PSC box beams 1140
Prestressed concrete continuous box beam or
6 5 . . 16
girder — multiple
Prestressed concrete continuous box beam or
6 6 . . 26
girder — single
Total number 8,859




Table C-9. Table showing the effect of covariates on the performance of superstructures by their
own.

;ar. Variables in model 2log L L1k.e11hood Result

0. ratio

0 None 234,158.95 | - Null model
1 District 234,030.87 | 128.08 Significant
2 Region 234,134.09 | 24.86 Significant
3 Superstructure type 233,745.38 | 413.57 Significant
4 Waterway 234,145.74 | 13.22 Significant
5 Age in TICR 234,074.55 | 84.40 Significant
6 Structure length (ft.) 234,135.44 | 23.52 Significant
7 Maximum span length (ft.) 234,110.21 | 48.74 Significant
8 Freeze/thaw (days/year) 233,962.90 | 196.06 Significant
9 Snow (days/year) 234,156.10 | 2.85 Not sign.
10 Salt (tons/lane miles) 234,078.35 | 80.60 Significant
11 ADT 234,158.67 | 0.28 Not sign.
12 ADTT 234,158.95 | 0 Not sign.

Table C-10 lists the output for the Cox regression model built for superstructures. The description of this
table is similar to Table C-2 for Cox regression output for CIP decks presented earlier. For superstructures,
the reference covariate was steel continuous girders, so this covariate does not appear in Table C-10. Those

covariates (or combinations of covariates) that are nonsignificant are shaded in the table.

Table C-10. Table showing the Cox regression output for superstructures.

No. Parameter DF Pi{rameteAr Standard Chi-square| P-value
estimate ()| error
1 RCC slabs 1 0.346 0.113 9.385 0.002
2 RCC girders 1 0.875 0.126 46.40 <.0001
3 Steel simple girders 1 0.582 0.089 42.69 <.0001
4 PSC cont. girders 1 0.220 0.109 4.051 0.044
5 PSC box beams 1 0.304 0.104 8.492 0.004
6 Age in TICR 1 0.021 0.001 286.9 <.0001
7 Age in TICR*RCC slabs 1 -0.016 0.002 69.91 <.0001
8 Age in TICR*RCC girders 1 -0.023 0.002 145.3 <.0001
9 Age in TICR*steel girders 1 -0.010 0.002 43.03 <.0001
10 Age in TICR*PSC cont. girders 1 0.0005 0.003 0.029 0.864
11 Age in TICR*PSC box beams 1 -0.017 0.004 22.94 <.0001
12 Maximum span length 1 0.003 0.0003 114.7 <.0001
13 Maximum span length*RCC slabs 1 -0.00007 0.002 0.002 0.962
14 Maximum span length*RCC girders 1 0.006 0.001 22.09 <.0001
15 Maximum span length*Steel girders 1 -0.003 0.001 9.890 0.002
16 Maximum span length*PSC cont. girders 1 0.002 0.001 3.026 0.082
17 Maximum span length*PSC box beams 1 0.010 0.001 93.38 <.0001

Table C-11 shows the Cox regression output for superstructures in different districts, the covariate of salt
application and the interaction of salt application with districts to assess if the effect of salt is different in

different districts. The reference district was the NE district.



Table C-11. Table showing Cox regression analysis output for superstructures.

No. Parameter DF P&{rametehr BT Chi-square| P-value
estimate (5)| error
1 NW 1 -1.224 0.266 21.14 <.0001
2 KC 1 -0.645 0.649 0.988 0.320
3 CD 1 -1.917 0.538 12.70 0.0004
4 SL 1 -0.337 0.152 4.900 0.023
5 SW 1 1.434 0.195 53.68 <.0001
6 SE 1 -1.378 0.394 12.23 0.0005
7 Salt (tons/lane miles) 1 0.634 0.141 20.26 <.0001
8 Salt*NW 1 -1.224 0.266 21.14 <.0001
9 Salt*KC 1 -0.060 0.184 0.106 0.745
10 Salt*CD 1 0.790 0.192 16.82 <.0001
11 Salt*SL 1 -0.337 0.152 4.900 0.027
12 Salt*SW 1 1.434 0.196 53.68 <.0001
13 Salt*SE 1 -1.378 0.394 12.23 0.0005

Table C-12 shows the general statistics for superstructures based on the construction materials and type.
These data indicate the values for the covariates used in the analysis. The values listed in the table indicate
median, mode, average, and standard deviation for different covariates such as age, maximum span length,

etc., subdivided by materials and construction type such as continuous steel girders, steel girders, etc.



Table C-12. Table showing general statistics for superstructures based on construction material
and construction type.

General statistics

Covariate name Superstructure type Count Median| Mode | Average| _STD
Steel continuous girders 2,517 49 54 46 14
Steel girders 1,562 64 58 67 15
Age (years) PSC cont. girders 1,177 25 24 26 12
PSC box beams 658 9 8 17 15
RCC slabs 984 53 51 55 37
RCC beams 1,013 64 61 67 17
Steel continuous girders 2,517 83 70 93 43
Steel girders 1,562 40 49 43 20
Maximum span length PSC cont. girders 1,177 67 90 69 18
(ft.) PSC box beams 658 75 60 74 31
RCC slabs 984 45 56 44 18
RCC beams 1,013 47 43 52 22
Steel continuous girders 2,517 250 164 354 427
Steel girders 1,562 107 107 125 106
PSC cont. girders 1,177 202 146 251 221
Structure length (ft. PSC box beams 658 137 90 192 206
RCC slabs 984 135 67 144 131
RCC beams 1,013 138 128 169 129
Steel continuous girders 2,517 3 3 4 3
Steel girders 1,562 3 3 3 3
Number of span PSC cont. girders 1,177 3 3 4 3
PSC box beams 658 3 3 3 2
RCC slabs 984 3 3 4 2
RCC beams 1,013 3 3 3 2
Steel continuous girders 2,517 7 7 7 1
Steel girders 1,562 7 6 6.6 1
Average condition PSC cont. girders 1,177 7 7 7 1
rating PSC box beams 658 7 7 7 1
RCC slabs 984 6 6 6 1
RCC beams 1,013 6 6 5.5 1
Steel continuous girders 2,517 3,500 11,000 8,386 14,747
Steel girders 1,562 490 200 2,796 12,047
ADT PSC cont. girders 1,177 | 4,538 | 11,000 | 9,264 15,845
PSC box beams 658 1,506 210 4,875 11,415
RCC slabs 984 4,877 5,500 12,444 19,803
RCC beams 1,013 | 2,140 | 5,500 8,031 15,671
Steel continuous girders 2,517 401 1,100 1,145 1,978
Steel girders 1,562 52 19 340 1,444
ADTT PSC cont. girders 1,177 559 1,100 1,178 1,983
PSC box beams 658 167 20 601 1,405
RCC slabs 984 561 550 1,552 2,473
RCC beams 1,013 239 550 963 1,943




Table C-13. Table showing general statistics for salt application used for superstructure analysis.

C iat S ructure t Count General statistics
ovariate name uperstructure type oun Median| Mode | Average STD

NE 9,810 2.2 4.4 29 1.3
NW 11,385 2.9 2 2.7 0.8
KC 7,931 43 4.9 4.2 1.3

Salt (tons/lane mile) CD 11,568 2.8 3.5 2.6 1.1
SL 5,951 5 10.1 5.1 2.2
SE 16,206 1.2 0.7 1.2 0.4
SW 14,697 2.2 2.8 2.1 0.8

Reliability Analysis for Substructures

The final Cox regression model for substructures after investigating the influential observations and outliers

are shown in Table C-14.

Table C-14. Table showing the Cox regression output for substructures.

No. Parameter DF P&{rameteAr Standard Chi-square| P-value
estimate ()| error
1 Age in TICR 1 0.006 0.001 99.40 <.0001
2 NW 1 -2.848 0.538 28.06 <.0001
3 KC 1 -0.708 0.577 1.508 0.220
4 CD 1 -2.246 0.445 25.44 <.0001
5 SL 1 -0.0637 0.356 0.032 0.858
6 SW 1 -4.033 0.392 105.5 <.0001
7 SE 1 1.387 0.510 7.395 0.006
8 Salt (tons/lane miles) 1 0.901 0.096 90.83 <.0001
9 Salt*NW 1 1.092 0.193 32.12 <.0001
10 Salt*KC 1 -0.115 0.152 0.575 0.448
11 Salt*CD 1 0.988 0.162 37.11 <.0001
12 Salt*SL 1 -0.312 0.104 9.019 0.003
13 Salt*SW 1 2.208 0.159 193.2 <.0001
14 Salt*SE 1 -0.001 0.355 0.000 0.998
15 Structure length (ft.) 1 0.0001 0.00001 33.83 <.0001
16 Waterway 1 0.105 0.019 28.00 <.0001

The statistically significant covariates are age in TICR, salt, district, structure length, whether a bridge is

located on a waterway or not, and interaction of district with salt.

The effect of the categorical covariate district is a relative effect. As shown in Table C-14, six of the seven
districts are listed and district Northeast (NE) is not listed, because it is selected as a reference district and
other districts are compared to NE. The parameter estimates for the six districts show the extent of hazard
either larger than NE, as is the case for Southeast (SE), or smaller than NE, as is the case for all other five

districts.



In row 16 of Table C-14 the covariate waterway is a categorical covariate comparing the reliability of
substructure located on a waterway to those that are not located on a waterway. The reference level is
substructures not located on a waterway and the parameter estimate for substructures located on a waterway
is 0.105 relative to substructures not located on a waterway. The hazard ratio for these two categories of
substructures is €*1%=1.11, or substructures located on a waterway has 11% more hazard of deteriorating
to lower CRs than those not located on a waterway. Inverting the hazard ratio shows that substructures not
located on a waterway has 90% of the hazard of substructures located on a waterway. The hazard ratio for
all covariates as well as the confidence interval for the hazard ratios are listed in the main body of the report.

Table 24 shows the effect of covariates on substructures.

The general statistics for substructure are listed in Table C-15. Table C-16 shows the general statistical data

related to salt application in the different districts.

Table C-15. Table showing general statistics for substructures.

C iat Count General statistics (year)
ovariate name oun Median| Mode | Average STD
Age 8,728 53 54 50.2 24.6
Structure length (ft.) 8,728 170 113 251.7 400.8
Number of spans 8,728 3 3 3.4 2.6
Average condition rating 8,728 7 7 6.6 1.2

Table C-16. Table showing the general statistical data related to salt application in the different
districts.

Covariate name Count General statistics (year)
Median| Mode | Average STD
NE 9,810 22 44 29 1.2
NW 11,385 29 2.0 2.7 0.8
KC 7,931 43 4.9 4.2 1.3
Salt (tons/lane miles) CD 11,568 2.8 3.5 2.6 1.1
SL 5,951 4.9 10.1 5.1 22
SE 16,206 1.2 22 1.2 0.4
SW 14,697 22 2.8 22 0.8
Number of bridges over a waterway and not over a waterway
Number of bridges over a waterway | 6,227 | Number of bridges not over a waterway | 2,501

Reliability Analysis for Culverts

The effect of the covariates on the reliability, or survival, of the culverts are investigated using the Cox
regression and presented in following paragraphs. Before beginning the statistical analysis of the effect of
covariates on deterioration of the culverts, general information about the covariates is provided first in
Table C-17. The distribution of the concrete continuous culverts for districts is shown in the lower part of

Table C-17 as well. The covariates considered for data analysis of concrete continuous culverts are structure
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length (ft.), maximum span length (ft.), amount of salt used for deicing purposes (tons/lane miles),

freeze/thaw cycles (days/year), snow (days/year), ADT, ADTT, and district.

Table C-17. Table showing general statistics for culverts.

Covariate name Count General statistics (year)
Median| Mode | Average STD
Age 62 59 614 22.1
Structure length (ft.) 27 25 30.6 11.0
Average condition rating 3962 6 6 6.6 0.9
Snow (days/year) ’ 42 41 41.4 9.4
ADT 853 754 4,662 12,901
ADTT 91 77 464 1,773
NE 9,810 2.2 1.9 2.9 1.2
NW 11,385 2.9 4.4 2.7 0.8
KC 7,931 4.3 4.9 4.2 1.3
Salt (tons/lane miles) CD 11,568 2.8 4.4 2.6 1.1
SL 5,951 5.0 10.1 5.1 2.2
SE 16,206 1.2 2.2 1.2 0.4
SW 14,697 2.2 3.3 2.1 0.8
Number of culverts for districts
District name Counts of culverts District name Counts of culverts
Northwest 370 St. Louis 226
Northeast 419 Southwest 688
Kansas City 260 Southeast 807
Central 492

Table C-18 shows the result of the Cox regression analysis for concrete continuous culverts for each of the
covariates individually, and the result is compared with the null model (no covariate in the model). This
initial analysis shows whether a covariate is statistically significant by its own, and a non-significant
covariate may become significant in the presence of other covariates when all covariates are included in the
model. The model building procedure described in the model development section is followed to build the

Cox regression model for concrete continuous culverts.



Table C-18. Table showing the result for Cox regression analysis of individual covariates for

culverts.

Var. No. | Variables in model 2log L ?;Eihhooa Result
0 None 101,231.73 Null model

1 Age in TICR 100,989.30 13.81 Significant
2 District 100,919.60 83.51 Significant
3 Structure length (ft.) 100,972.83 30.28 Significant
4 Maximum span length (ft.) 100,998.55 4.57 Significant
5 Freeze/thaw cycle (days/year) 101,002.41 0.71 Not sig.

6 Snow (days/year) 100,987.72 15.40 Significant
7 Salt (tons/lane miles) 100,987.16 15.95 Significant
8 ADT 101,000.34 2.77 Not sig.

9 ADTT 101,001.56 1.55 Not sig.

The final output for Cox regression model for concrete continuous culverts is shown in Table C-19.

Description of Table C-19 is similar to the one provided for CIP decks in Table C-2. The parameter

estimates from Table C-19 were used to calculate the hazard ratios for all covariates listed in this table and

the hazard ratios are listed in Tables 26 and 27.

Table C-19. Table showing the Cox regression output for culverts.

No. Parameter DF P&{rameteAr Standard Chi-square Pr > chi-
estimate (/) error square
1 Age in TICR 1 0.003 0.001 17.61 <.0001
2 NW 1 1.641 1.334 1.514 0.218
3 KC 1 1.482 1.648 0.808 0.369
4 CD 1 2.698 0.837 10.39 0.001
5 SL 1 2.004 0.844 5.631 0.017
6 SW 1 5.815 0.690 70.96 <.0001
7 SE 1 5.873 0.926 40.24 <.0001
8 Salt (tons/lane miles) 1 1.533 0.198 59.73 <.0001
9 Salt*NW 1 -0.501 0.484 1.070 0.301
10 Salt*KC 1 -0.721 0.404 3.184 0.074
11 Salt*CD 1 -0.783 0.310 6.403 0.011
12 Salt*SL 1 -0.9275 0.212 19.20 <.0001
13 Salt*SW 1 -2.051 0.286 51.24 <.0001
14 Salt*SE 1 -2.716 0.661 16.89 <.0001
15 Structure length (ft.) 1 0.008 0.001 37.85 <.0001
16 Snow (days/year) 1 0.022 0.005 20.96 <.0001
17 Snow*salt 1 -0.004 0.002 4.450 0.035




APPENDIX D. RELIABILITY AND SERVICE LIFE GRAPHS FOR CIP DECKS
BY MODOT DISTRICT

This appendix includes the reliability and service life graphs for CIP decks in each of the MoDOT districts.
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Figure D-1. Plot showing the reliability and median service life graphs for CIP decks in CR 8-3 located in Northwest district.
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Figure D-2. Plot showing the reliability and median service life graphs for CIP decks in CR 8-3 located in Northeast district.
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Figure D-3. Plot showing the reliability and median service life graphs for CIP decks in CR 8-3 located in Kansas City district.
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Figure D-4. Plot showing the reliability and median service life graphs for CIP decks in CR 8-3 located in Central district.
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Figure D-5. Plot showing the reliability and median service life graphs for CIP decks in CR 8-3 located in St. Louis district.
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Figure D-6. Plot showing the reliability and median service life graphs for CIP decks in CR 8-3 located in Southwest district.
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Figure D-7. Plot showing the reliability and median service life graphs for CIP decks in CR 8-3 located in Southeast district.
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APPENDIX E. RELIABILITY AND SERVICE LIFE GRAPHS FOR CIP DECKS
BY SUPERSTRUCTURE TYPES
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Figure E-1. Plots showing the reliability graph for CIP decks on steel simple girders (left) and service life (right).
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Figure E-2. Plots showing the reliability graph for CIP decks on steel continuous girders (left) and service life (right).
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Figure E-3. Plots showing CIP decks reliability graph on PSC continuous girders (left) and service life (right).
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Figure E-4. Plots showing the reliability graph for CIP decks on PSC box beams (left) and service life (right).
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Figure E-5. Plots showing the reliability graph for CIP decks on RCC girders (left) and service life (right).
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APPENDIX F. RELIABILITY AND SERVICE LIFE GRAPHS FOR
SUPERSTRUCTURE TYPES

This section contains the reliability and service life graphs for superstructures.
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APPENDIX G. MODEL VERIFICATION

The following appendix includes the verification process for the Cox regression model used in the research.
This includes verifying the functional form of the covariates, checking the proportional hazard assumption,
assessing the influence of outliers, verifying the overall fit of the models, and checking the predictive
accuracy of the model. The results of the verification processes are graphical in nature, and results are
presented as figures illustrating the fit of the curves. The verification for the CIP deck Cox model is
presented first with some text describing the results. For other bridge components and culverts, only the

graphical results are presented.

The results in this appendix are provided for two reasons. First, to demonstrate that the Cox regression
results presented in the research have been rigorously validated using statistical methods. Second, the
results are presented for use by future researchers exploring the use of Cox regression methodologies to

analyze bridge deterioration.

Checking Model Assumptions for CIP Decks

Functional Form of the Covariates

To determine the correct functional form of continuous covariates, the Martingale residual was requested
from the null model for CIP decks — a model without any covariates. The residual is plotted against the
covariate and a smoothed curve is fitted on the plot. The shape of the smoothed curve shows the shape of
the relationship between the dependent variable and the covariate. Initially, it is assumed that the hazard is
related to the exponentiated linear function of the covariates and if the smoothed curve is linear without any
defined shape, then the assumption is valid. Otherwise, the shape of the smoothed curve indicates the true
relationship between the dependent variable and the covariate. For reading further about this, please refer
to the Appendix A section titled “MODEL ASSUMPTIONS” and the references provided therein. As
shown in Figure G-1, the martingale residual is plotted against the covariate TICR, a covariate used to
investigate the effect of age of the bridge components on bridge deterioration. There are four plots with
different smoothing coefficients. The smoothing coefficient for top left-hand plot is 0.2, and as shown the
smoothed curve is oscillating around zero and overfitting the smoothed curve [12]. But as the smoothing
coefficient increases the overfitting problem is resolved and as shown in the lower right-hand plot, the
smoothed plot is linear and flat for the smoothing coefficient of 0.8. This indicates that the exponentiated

linear relationship between covariate for time in CR and the dependent variable TICR is valid.
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Figure G-1. Plot showing martingale residuals with smooths for age in TICR for CIP decks.
The martingale residual plot for the maximum span length, which investigates the effect on CIP deck

deterioration, is shown in Figure G-2. The plot for the smoothing coefficient of 0.8 shows a flat line passing

through zero, which indicates the linear relationship holds for this covariate as well.

Fits with Specified Smooths for martingale for Maximum Span Length
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Figure G-2. Plot showing martingale residuals with smooths for CIP decks maximum span
length.



Similarly, Figure G-3shows the plot for martingale residual for the covariate of salt (tons/lane mile) and its
overlayed flat smoothed curve. The curve for the smoothing coefficient of 0.8 shows a little slope due to
two data points for salt in St. Louis district. These data points were investigated for influential effects on

parameter estimates and outliers and none of the points were identified as influential or outliers.

Fits with Specified Smooths for martingale
Smooth = 0.2 Smooth = 0.4

Martingale Residual

Smooth = 0.6 Smooth = 0.8
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Salt (Tons/Lane Miles) Salt (Tons/Lane Miles)

Figure G-3. Plot showing martingale residuals with smooths for salt per mile for CIP decks.
The martingale residual for the covariate of snow days is plotted in Figure G-4. As shown, for the smooth
coefficient of 0.8 the curve is flat with a little bit of slope through the end. These data points were
investigated for influential effects on parameter estimates and outliers and no data points were identified as

such.
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Fits with Specified Smooths for martingale
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Figure G-4. Plot showing martingale residuals with smooths for snow days for CIP decks.

Proportional Hazard Assumption

The proportional hazard (PH) assumption is the second assumption in building the Cox regression model.
As described in “MODEL ASSUMPTIONS” section of Appendix A, initially, it is assumed that the hazard
is time independent, and it does not change with respect to the dependent variable TICR for CIP decks. To
verify this assumption, the Schoenfeld residuals for individual covariate are requested and plotted against
the covariate itself. A flat, smooth curve as shown in Figure G-5, for all smoothing coefficients, indicates

that the PH assumption holds for the covariate age in TICR.
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Fits with Specified Smooths for Age in TICR
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Figure G-5. Plot showing Schoenfeld residuals with smooths for age in TICR for CIP deck.
The Schoenfeld residual plotted against the maximum span length is shown in Figure G-6. The plots for all
four smoothing coefficients show that the PH assumption holds for covariate maximum span length for CIP

decks.
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Figure G-6. Plot showing Schoenfeld residuals with smooths for maximum span length for

CIP deck.

The Schoenfeld residual plotted against salt is shown in Figure G-7. The plots for all four smoothing

coefficients show that the PH assumption holds for covariate salt for CIP decks.
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Figure G-7. Plot showing Schoenfeld residuals with smooths for salt for CIP deck.
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The Schoenfeld residual for the covariate snow days is shown in Figure G-8. The fit for the plot for all four
smoothing coefficients looks flat at zero, which indicates the PH assumption is met for the covariate of

snow days.

Fits with Specified Smooths for Snow Days
Smooth = 0.2 Smooth = 0.4
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Figure G-8. Plot showing Schoenfeld residuals with smooths for snow days for CIP deck.
There is an interaction between the covariate salt and snow days in the model. The Schoenfeld residual for

the interaction term is shown in Figure G-9. As shown, the fit for the smoothed curve is flat for all four

different smoothing coefficients which indicate that the PH assumption for interaction term holds as well.
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Figure G-9. Plot showing Schoenfeld residuals with smooths for salt and snow interaction
for CIP deck.

Influential Observations and Qutliers

Investigation of the influential observations for each continuous covariate is presented here. For this
purpose, the dfbeta measure, dfp, is calculated for each covariate and then plotted against the associated
covariate to determine whether an observation has influential effects or not. For details on influential
observations, please see “MODEL ASSUMPTIONS” section in this report (Appendix A). As shown in
Figure G-10, the scatter plot uses the Federal ID for a bridge to determine the bridges with influential
observations for covariates. The vertical axis is the dfp, labeled as “Difference in parameter estimate for
age in TICR” and the horizontal axis is the associated covariate, age in TICR. The plot also shows the
symmetry grid line at £ 0.00005. A comparison of the absolute values with the parameter estimate for age
in TICR (+0.01293) shows that the difference is small. Specifically, as shown, inclusion of bridge ID 10023
would decrease the parameter estimated for age in TICR by over 0.0001, which is a small amount compared
to the parameter estimate. If observations for age in TICR for bridge ID 10023 are excluded from the model,
the parameter would be 0.01281, or less than 1% smaller than if this observation is kept in the model. Other
bridge IDs are either decreasing (falling below zero) or increasing (falling above zero) the parameter
estimate by a much smaller amount compared to bridge ID 10023. Therefore, these observations are not

influential, and no corrective action is required.
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Figure G-10. Plot showing the influence of individual observations on age in TICR for CIP
deck.

The dfp for the covariate maximum span length (ft.) is shown in Figure G-11. The furthest bridge ID shown
in this graph is 2780 shows that by including this observation, the parameter estimates for maximum span
length would decrease by an amount of about 0.00008. Comparing this quantity with the parameter estimate
for maximum span length +0.00176, it appears to reduce the parameter estimate by 4.6%. For example, if
a cut off percentage point of 5% is set for detection of influential observations, even in this case, this

observation is not an influential observation. Other bridge IDs are not influential compared to this bridge.
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Figure G-11. Plot showing the influence of individual observations on maximum span
length for CIP deck.

The dfp for the covariate of salt (tons/lane miles) is shown in Figure G-12. Two bridge IDs that have the
highest influence are 4950 and 3324. Including the salt data for these two bridges in the analysis would
decrease the parameter estimate for salt by over 0.004 for each of the observations, individually. Comparing
this quantity with the parameter estimate for salt, 0.29513, in model 3, it appears that the influence is not
large enough and including these observations would decrease the parameter estimate by only about 2.6%,

combined. All other observations influential effects are smaller than the bridge 4950 and 3324.
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Figure G-12. Plot showing the influence of individual observations on salt for CIP deck.
The plot for investigating influential observations for the covariate of snow days is shown in Figure G-13.
As shown in Figure G-13, bridge ID 3133 has the highest influence on reducing the parameter estimate if
included in the model. The amount of influence from this observation is close to 0.0003. Comparing this
value with the parameter estimate for snow days, 0.01735 demonstrates that the influence is not

pronounced, and the observation could stay in the model without adverse effect on parameter estimate for

snow days.
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Figure G-13. Plot showing the influence of individual observations on snow days for CIP
deck.

The plot of the effect of the influential observations for the interaction term of snow days and salt is shown
in Figure G-14. The furthest bridge IDs are 9224 and 4550 with positive values at about 0.00015.
Comparing this value with the parameter estimate for the interaction, -0.00599, indicates that including
these two points would increase the parameter estimate by 0.00015, or by 2.6% each. Again, the change is

not dramatic and therefore it is not an influential observation for this interaction.
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Figure G-14. Plot showing the influence of individual observations on salt and snow
interaction for CIP deck.

Overall Fit for CIP Decks
The plot to check for the overall fit of the model is shown in Figure G-15. The vertical axis is the likelihood

displacement that “quantifies how much the likelihood of the model, which is affected by all coefficients,
changes when the observation is left out.” [12] Again, bridge IDs are shown on the plot to find out the
bridge which influences the Cox regression’s overall fit. But as discussed before, this observation does not
have a dramatic influence on the specific parameter, and therefore no observations were deleted, and no

new models were fit.
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Figure G-15. Plot of likelihood displacement for the overall fit of the model for CIP decks.
Predictive Accuracy of the Cox Regression for CIP Decks

The predictive accuracy of the Cox regression for CIP decks is presented below using the Harrell’s C-
statistics. For CIP decks data set, there are 85,496,079 concordant pairs, 54,473,993 discordant pairs, and
6,619,931 tied-in-time pairs. Using equation (A-7), the C-statistics for CIP decks is 0.61. The area under
the ROC curve (AUC) and the 95% confidence interval for CIP decks is shown in Figure G-16. As shown,
the predictive accuracy of the Cox regression is reaching 0.7 for TICR equal to 15 years and increasing for
longer TICRs than 15. Typical, or common, values for C-statistics for valid model are in the range of 0.6
to 0.8. As these data show, the C-statistic is within the typical value for statistical models and increases
with increasing TICR. This verifies the predictive accuracy of the Cox regression models used in the

research.
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Figure G-16. Plot showing AUC for the time-dependent ROC curve for CIP decks.



Checking Model Assumptions for Superstructures

This section contains the model assumptions for superstructures. Description of each plot is provided for

CIP decks and is omitted here.

Functional Form of the Covariates
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Fits with Specified Smooths for martingale
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Figure G-18. Plot showing martingale residuals with smooths for maximum span length for
superstructures.
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Figure G-19. Plot showing martingale residuals with smooths for salt for superstructures.
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Figure G-20. Plot showing martingale residuals with smooths for snow days for
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Fits with Specified Smooths for Maximum Span Length
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Figure G-22. Plot showing Schoenfeld residuals with smooths for maximum span length for
superstructures.
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Figure G-23. Plot showing Schoenfeld residuals with smooths for salt for superstructures.

G-19



Fits with Specified Smooths for Snow
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Figure G-24. Plot showing Schoenfeld residuals with smooths for snow for superstructures.

Influential Observations and Outliers

0.0001 8447 10021
8488 952

4943 4815

B'56 (78936 go3¢

& 0.0000 oair
s
£
5
< 9475
5 6256 23
2 6122 112 - 9990 o
o) 0.0001 8819 oy 4828

-0. 176
g 9995 6162 ﬁ%;ﬁ
«
8 5 9419
ES 5889 9677
£
8
c
g -0.0001 5038
@
E 9486

-0.0002 488

0 20 40 60 80 100 120

Age in TICR

Figure G-25. Plot showing the influence of individual observations on age in TICR for
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Figure G-26. Plot showing the influence of individual observations on maximum span
length for superstructures.
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Figure G-27. Plot showing the influence of individual observations on salt for
superstructures.
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Figure G-28. Plot showing the influence of individual observations on snow for

Overall Fit for Superstructures
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Figure G-29. Plot of likelihood displacement for the overall fit of the model for

superstructures.
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Predictive Accuracy of the Cox Regression for Superstructures

The predictive accuracy of the Cox regression for superstructures is presented below using the Harrell’s C-
statistics. For superstructures data set, there are 73,135,361 concordant pairs, 53,982,296 discordant pairs,
4 tied-in-predictor, and 5,800,699 tied-in-time pairs. Using equation (A-7), the C-statistics for
superstructures is 0.58. The area under the ROC curve (AUC) and the 95% confidence interval for
substructures is shown in Figure G-30. As shown, the predictive accuracy of the Cox regression for

superstructures is about 0.6 in the beginning but reaching to 0.7 at TICR 25 to 37.
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Figure G-30. Plot showing AUC for the time-dependent ROC curve for superstructures.
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Checking Model Assumptions for Substructures

Functional Form of the Covariates

Fits with Specified Smooths for martingale for Age in TICR
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Figure G-31. Plot showing martingale residuals with smooths for age in TICR for
substructures.
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Figure G-32. Plot showing martingale residuals with smooths for snow days for
substructures.
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Fits with Specified Smooths for martingale for Salt
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Figure G-33. Plot showing martingale residuals with smooths for salt for substructures.

Proportional Hazard Assumption

Fits with Specified Smooths for Age in TICR
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Figure G-34. Plot showing Schoenfeld residuals with smooths for age in TICR for
substructures.
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Schoenfeld residuals
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Figure G-35. Plot showing Schoenfeld residuals with smooths for snow for substructures.
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Figure G-36. Plot showing Schoenfeld residuals with smooths for salt for substructures.
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Influential Observations and Outliers
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Figure G-37. Plot showing the influence of individual observations on age in TICR for

substructures.
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Figure G-38. Plot showing the influence of individual observations on snow days for
substructures.
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Figure G-39. Plot showing the influence of individual observations on salt for
substructures.

Overall Fit for Substructures

As shown in Figure G-40,data for structure number 5387, 5272, and 30668 fall outside of other
substructures in the data set, and therefore these three substructures are excluded in the final model

presented in Table C-14.
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Figure G-40. Plot of likelihood displacement for the overall fit of the model for
substructures.

Predictive Accuracy of the Cox Regression for Substructures

The predictive accuracy of the Cox regression for substructures is presented below using the Harrell’s C-
statistics. For substructures data set, there are 76,923,632 concordant pairs, 61,010,630 discordant pairs, 4
tied-in-predictor, and 5,878,054 tied-in-time pairs. Using equation (A-7), the C-statistics for substructures
is 0.56. The area under the ROC curve (AUC) and the 95% confidence interval for substructures is shown
in Figure G-41. As shown, the predictive accuracy of the Cox regression is about 0.6 throughout the

available data.
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Figure G-41. Plot showing AUC for the time-dependent ROC curve for substructures.
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Checking Model Assumptions for Culverts

For reading the graphs for model validation of culverts, the description is similar to those provided for CIP

decks.

Functional Form
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Figure G-42. Plot showing martingale residuals with smooths for age in TICR for culverts.
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Fits with Specified Smooths for martingale for Structure length
Smooth = 0.2 Smooth = 0.4

Martingale Residual

Martingale Residual

20 40 60 80 100 20 40 60 80 100
Structure length (ft) Structure length (ft)

Figure G-43. Plot showing martingale residuals with smooths for structure length for
culverts.
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Figure G-44. Plot showing martingale residuals with smooths for snow days for culverts.
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Figure G-45. Plot showing martingale residuals with smooths for salt for culverts.
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Figure G-46. Plot showing Schoenfeld residuals with smooths for age in TICR for culverts.
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Fits with Specified Smooths for Snow
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Figure G-47. Plot showing Schoenfeld residuals with smooths for snow for culverts.
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Figure G-48. Plot showing Schoenfeld residuals with smooths for salt for culverts.
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Fits with Specified Smooths for Salt and Snow interaction
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Figure G-49. Plot showing Schoenfeld residuals with smooths for salt and snow interaction
for culverts.
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Figure G-50. Plot showing the influence of individual observations on age in TICR for
culverts.
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Figure G-51. Plot showing the influence of individual observations on Structure length for

culverts.
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Figure G-52. Plot showing the influence of individual observations on snow days for
culverts.
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Figure G-53. Plot showing the influence of individual observations on salt for culverts.
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Figure G-54. Plot showing the influence of individual observations on salt and snow
interaction for culverts.
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Overall Fit for Culverts
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Figure G-55. Plot of likelihood displacement for the overall fit of the model for culverts.

Predictive Accuracy of the Cox Regression for Culverts

The predictive accuracy of the Cox regression for culverts is presented below using the Harrell’s C-
statistics. For culverts data set, there are 16,835,557 concordant pairs, 11,960,669 discordant pairs, and
1,358,495 tied-in-time pairs. Using equation (A-7), the C-statistics for substructures is 0.58. The area under
the ROC curve (AUC) and the 95% confidence interval for substructures is shown in Figure G-56. As
shown, the predictive accuracy of the Cox regression for superstructures is about 0.6 throughout the

available data for culverts.
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Figure G-56. Plot showing AUC for the time-dependent ROC curve for culverts.
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