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APPENDIX A. DESCRIPTION OF THE STATISTICAL METHODS 

The deterioration modeling for the project was conducted using two separate methodologies. The Kaplan-

Meier (K-M) method of survival analysis was used to determine the overall characteristics of deterioration 

in terms of the time-in-condition rating (TICR) for culverts and bridge components of deck, superstructure, 

and substructure. This analysis was used to characterize the reliability of structures in terms of how rapidly 

components’ condition rating (CR) decreased over time based on historical inspection records that were 

obtained for the project.  

Cox regression or Cox proportional hazard was used to assess the effect of independent variables such as 

span length, application of deicing chemicals, etc. on bridge components and culverts’ deterioration. This 

methodology is optimum for assessing multiple independent variables that might influence the deterioration 

of structures, how these variables interact, and which variables have a significant influence on bridge 

deterioration.   

The contents of this section were summarized in the main body of the report. Additional details on the 

modeling methodologies used can be found in Appendix C and validation methodologies for testing the 

applicability of the models can be found in Appendix G.  

Kaplan-Meier Survival Analysis 

Before introducing the statistical methods used in this research in detail, providing the definition of the 

terms that are used in subsequent sections of the report would be helpful. The first term is dependent 

variable also called an outcome variable defined as “any outcome variable associated with some measure” 

such as the CR of  a bridge component or culvert recorded at some inspection intervals [1]. The dependent 

variable in this research is the time or duration a bridge component or culvert stayed in a CR. For example, 

a bridge superstructure is rated in CR 7 for 15 years, therefore this superstructure has a time in condition 

rating (TICR) of 15 in CR 7. Say this superstructure then transitioned to CR 6 and stayed in CR 6 for nine 

years, then the superstructure has a TICR of 9 in CR 6 and so on. The duration a bridge component or 

culvert is in service is called survival time. The survival time can be subdivided into survival time for each 

CR since each CR has distinct definition.  

The second term is covariate, also called an explanatory variable, defined as “any variable that is 

measurable and considered to have a statistical relationship with the dependent variable” [1]. Examples of 

the covariates considered in this project and speculated to have relationship with the dependent variable are 

snow days, freeze/thaw cycles, Average Daily Traffic (ADT), Average Daily Truck Traffic (ADTT), and 
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so on. Covariates are divided into continuous and categorical families. Continuous covariates are those that 

can take any numeric values such as ADT or number of snow days in a given year. Categorical covariates 

are those that are qualitative without any numeric value such as the location of a bridge in any of seven 

districts of Missouri, or the subdivision of bridge superstructures into subgroups such as prestressed 

concrete girders and steel girders. Categorical covariates have two or more levels or categories.  

The current approach is to perform survival analysis, known in engineering as reliability analysis or time 

to failure analysis, employing statistical methods to study the incidence and time of events [2]. One of the 

methods for time to failure analysis is the K-M estimator or the product-limit method. The K-M method is 

a nonparametric maximum likelihood estimator of time to event data (i.e., component transitioning to a 

different CR) and is a common method for treating discontinuous reliability data [2, 3].  

Reliability data can be calculated using the K-M estimator by equation (A-1).  

 𝑆̂𝑆(𝑡𝑡) = � (1 −
𝑑𝑑𝑗𝑗
𝑛𝑛𝑗𝑗𝑗𝑗:𝑡𝑡𝑗𝑗≤𝑡𝑡

)  for 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑘𝑘 (A-1) 

In equation (A-1), S t( )  is the K-M estimator, d j  is the number of bridge components for which the event 

occurred (transitioned to the lower CR) at time t j , nj  is the number of bridge components at risk of event 

at time t j , and t1  , tk  are the boundary for k distinct event times. The K-M estimator is accompanied by 

statistics such as the mean, median, confidence interval for the median, standard error of the mean, and 

hazard rate that can be used to analyze results.  

The hazard or failure rate is the number of bridge components per unit of time (year) to transition from one 

CR to the lower one (assuming the rate is constant during the year).  The hazard rate can be computed 

instantaneously, cumulatively, or averaged within a certain time interval [4]. The instantaneous hazard rate 

is the number of bridge components that transition to a lower CR in a unit of time (year) and this quantity 

varies from one year to the next. This estimate can be computed for t j j≤ ≤t t +1 using equation (A-2) in 

which τ j = t tj+1 − j  [5].  

 ℎ�(𝑡𝑡) =
𝑑𝑑𝑗𝑗

𝑛𝑛𝑗𝑗 ⋅ 𝜏𝜏𝑗𝑗
 (A-2) 
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The cumulative failure rate is the integral of the instantaneous hazard rate within the interval of 0 to t

this quantity could be computed as H ( )t = − ln(S t( )) . Similarly, average failure rate (AFR) could be 

computed within any two time-intervals. Since instantaneous failure rate is variable and changes in each 

unit of time, the AFR could be used to give a single number to indicate the average number of bridge 

components in a given CR per year to transition to the lower CR during the years the data are available for 

analysis.  

Finally, the K-M estimator can be used to study the effect of time-invariant covariates (explanatory 

variables) on bridge performance such as bridge families with different ADT, span length, location, and 

environmental conditions, and so on. Or bridges can be grouped based on construction era (1980 – 2000 

vs. 2000 – 2017) by time-blocking to study the effect of higher standards and improved construction 

material on bridge performance with those of the old standards and lower quality material. Other parameters 

described in Objective 3 can also be studied in this way. In this research, the K-M method has been used to 

study certain covariates, such as the material of construction for superstructure components (e.g., steel, 

PSC, etc.) and deterioration patterns among districts. However, the K-M estimator is not effective for 

analyzing the potential interactions between multiple covariates, such as the effect of deicing chemical 

application, snowy days, and ADT in combination. For this reason, Cox regression analysis has been used 

to study these covariates, as will be described in further sections of the report.  

Figure A-1 shows the deterioration model for steel superstructures in Missouri. These data indicate the 

TICR in years for bridges with different CRs ranging from 8 to 3. Figure A-1A shows the reliability 

(probability) of a component transitioning from one CR to another. The red line in the figure illustrates the 

median transition time. For example, for CR 5 (+), 50% of the components will transition to CR 4 after 

about 7 years in CR 5. Figure A-1B illustrates the deterioration rate of the component which is the 

compliment of the reliability.  

, and 
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Figure A-1. K-M deterioration models for steel superstructures in Missouri. 
The K-M method is only capable of analyzing survival data or the dependent variable alone to describe the 

reliability and deterioration patterns for bridge components and culverts. To investigate the effect of 

covariates on the reliability or deterioration of the bridge components or culverts another statistical method 

called Cox proportional hazard method or Cox regression is used. 

Cox Regression Analysis 

Cox proportional hazards model or Cox regression is semi-parametric method used for analyzing the effect 

of explanatory variable on the survival data [6]. This method is called semi-parametric as it has “a fully 

parametric regression structure but leaves their dependence on time unspecified” [7]. The equation for the 

Cox regression model is shown in equation (A-3). 
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 ℎ(𝑡𝑡,𝑋𝑋, ꞵ) =  λ0(t) × exp(ꞵ1𝑋𝑋1 + ꞵ2𝑋𝑋2 + ⋯ ) (A-3) 

In equation (A-3), h(t, X, ꞵ) is the dependent variable as a function of time and covariates (X, ꞵ). The 

dependent variable corresponds to the NBI CR assigned by inspectors to each one of the bridge components 

(deck, superstructure, and substructure) and culverts. The CR changes as bridges/culverts deteriorate, 

typically dropping to the next lower CR. Deterioration of the bridges/culverts and changes in CR are caused 

by factors such as salt used for deicing purposes, ADT, snow days, freeze/thaw cycles, and so on. These 

parameters believed to affect the deterioration patterns for bridge components and culverts are called 

covariates. The dependent variable is the product of the hazard function λ0(t) that “characterizes how the 

hazard function changes as a function of time” and the exponentiated linear function of the covariates, 

exp(ꞵ1𝑋𝑋1 + ꞵ2𝑋𝑋2 + ⋯ ) [7]. As shown, the hazard is a function of time, but the covariates are time 

independent – the covariates do not change with respect to time. The ꞵ’s are unknown parameters computed 

based on the available data for each covariate, Xn. No assumption is made about the shape of the hazard 

function λ0(t), and that is why Cox regression is called semi-parametric. If all covariates are equal to zero, 

then exp(0) equals a value of 1, leaving only the baseline hazard function, λ0(t) . The baseline hazard 

function is analogous to the intercept or the constant term in ordinary regression [7]. 

The parameter estimate for each covariate, ꞵ, is calculated using the method of partial maximum likelihood 

for each covariate. One of the properties of the Cox regression is that it can be stratified across variables 

not considered as a covariate such as the CR 3 - 8. In the case of stratified Cox regression, a single parameter 

is estimated by pooling the information from all strata – one parameter is estimated for CRs 3 – 8 of bridge 

components or culverts. Hence, as will be shown later, sample size in a given CR, especially in CR 3, may 

negatively affect the parameter estimate. 

The hazard ratio for two subjects (bridges or culverts) with covariate x0 and x1 using equation (A-3) only 

depends on (X,ꞵ) as the hazard functions cancels out each other as shown in equation (A-4). In this way, 

the hazard ratio   

 𝐻𝐻𝐻𝐻(𝑡𝑡, 𝑥𝑥, ꞵ) =  
exp(ꞵ1𝑋𝑋1)
exp(ꞵ0𝑋𝑋0)

 (A-4) 

can be used to compare the effect of one covariate to another. For example, this could be used to compare 

bridge performance in one district as compared to a different district.  
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Model Development 

Before embarking to model building for Cox proportional hazard method, the covariates were studied 

together to determine if there is any collinearity or multicollinearity, which is the case “in many 

nonexperimental situations” [8]. Collinearity or multicollinearity is defined as the correlation between the 

explanatory variables (i.e., covariates) available for model-building and those that are left out or neglected 

[8]. Multicollinearity between the explanatory variables poses problems that need to be addressed as 

outlined below [8, 9]. 

1. Presence of multicollinearity does not “inhibit our ability to obtain good fit nor does it tend to 
affect inference about the mean responses or predictions of new observations, provided these 
inferences are made within the region of observations.”  

2. “The estimated regression coefficients tend to vary widely from one sample to the next when the 
predictor variables are highly correlated. As a result, only imprecise information may be available 
about the individual true regression coefficients.” 

3. The interpretation of the regression coefficients to find out the effect of an explanatory variable 
on the response variable by increasing one covariate by one unit and holding all other covariates 
constant “is not fully applicable”. For example, to study the effect of bridge deterioration based 
on the number of snow days and the amount of salt used for deicing purposes, it is unrealistic to 
increase one covariate and keep the other one constant, because increasing one covariate 
inherently means the increase in use of the other covariate. Or ADTT is recorded as a percentage 
of ADT in the SI&A guide and the increase in ADT would cause the ADTT to increase 
proportionally.  

4. “A regression coefficient does not reflect any inherent effect of the particular predictor variable 
on the response variable, but only a marginal or partial effect, given whatever other predictor 
variables are included in the model. Or correlated covariates “contains much of the same 
information”.  

5.  The parameter estimate for the covariate is not significant even though the variable should be 
highly correlated with the response variable, the TICR.  

6. Addition or deletion of a covariate changes other regression coefficients “dramatically.” 
7. The sign of the regression coefficient is the opposite of the reality or prior experience. 

There are two ways to check for collinearity or multicollinearity. As an informal method, the simple 

correlation between the covariates using the pairwise correlation is helpful, but to unearth multicollinearity 

among several covariates, variance inflation factor (VIF) is effective. VIF is a measure of “how much the 

variance of an estimated regression coefficient increases” if the covariates are correlated [9]. The VIF for 

uncorrelated explanatory variables is equal to 1, and a greater VIF shows multicollinearity among predictor 

variables. There are different recommendations in the literature about ranking the severity of VIF. VIF of 

less than 4 is considered moderate and VIF between 4 to 10 is considered high. A VIF greater than 10 

indicates that the “regression coefficients are poorly estimated due to multicollinearity” [8-10]. 
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Table A-1 contains the VIF for the continuous covariates that would be used to build Cox regression model 

for cast-in-place (CIP) decks. In this table, each covariate is regressed on all other continuous covariates. 

Each column lists the covariate number against which each of the numbered covariates are regressed. For 

example, the first column lists the VIF result for the case where age in TICR is regressed on all other 

covariates. As shown in Table A-1, the VIF for the structure length is low (1.97) and the VIF for ADT and 

ADTT are high (close to 10). The VIF for the freeze/thaw and snow is about 2.5 or greater when both of 

the covariates are together, but when either one of the covariates are removed from the model - as shown 

in column 4 and 5 – the VIF is reduced for the other covariate, to a value of ~1.1 in this case.  

Table A-1. Variance Inflation Factor (VIF) for continuous covariates for CIP decks. 

Covariate 
No. Covariate Name 1 2 3 4 5 6 7 8 

1 Age in TICR  1.25 1.23 1.14 1.22 1.25 1.25 1.22 
2 Structure length (ft.) 1.97  1.04 1.97 1.97 1.97 1.97 1.97 
3 Max. span length (ft.) 2.01 1.07  2.04 2.04 2.04 2.04 2.03 
4 Freeze/thaw (days/year) 2.54 2.78 2.78  1.11 2.78 2.79 2.62 
5 Snow (days/year) 2.75 2.82 2.82 1.13  2.80 2.82 2.44 
6 ADT 9.62 9.63 9.63 9.61 9.57  1.30 9.13 
7 ADTT 9.18 9.19 9.20 9.20 9.20 1.24  9.14 
8 Salt (tons/lane miles) 1.41 1.45 1.44 1.36 1.26 1.38 1.44  

The following are the remedial actions recommended in the literature for lessening the effects of 

multicollinearity [8-10]. 

1. Drop one or more predictors from the regression model to minimize the effect of 
multicollinearity. 

2. “Restrict the use of the fitted regression model to inferences for values of the predictor variables 
that follow the same pattern of multicollinearity.” 

3. Use centered data for covariates – subtract the mean of a covariate from all observations – 
included in the analysis.  

4. Model the response variable on different explanatory variables of the same data set. 
5. Use Principal Component Analysis (PCA) to select the number of covariates that explain the 

majority of the error for the response variable.  

In this report a combination of recommendations 1 and 4 are employed to select the explanatory variables. 

For example, a Cox regression model is built by including ADT and another Cox regression is built by 

including ADTT, or similarly, two separate Cox regressions are built for the covariates of maximum span 

length and structure length. Recommendation 1 would be applied using the VIF criterion for correlated 

covariates. Since the VIF is calculated by regressing one explanatory variable on all other covariates and it 

is not related to the response variable and “the functional form of the model for the dependent variable is 

irrelevant to the estimation of collinearity,” it is applicable to Cox regression as well [11]. 
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Based on recommendation 1, dropping either one of the correlated covariates would lessen the effect of 

multicollinearity, and based on recommendation 4, we can build two models with different covariates of 

the same effect on the response variable, TICR. 

As mentioned before, partial maximum likelihood method is used to estimate the parameters associated 

with each of the covariates considered for each bridge component or culverts. The maximum likelihood 

estimate (𝐿𝐿�) shows “the extent to which the data are fitted by a particular model” and for a model the larger 

this statistic “the better is the agreement between the model and the observed data” [5]. 

 𝐿𝐿(𝛽𝛽) = �
exp (𝛽́𝛽 𝑥𝑥(𝑗𝑗))

∑ exp (𝛽́𝛽 𝑥𝑥𝑙𝑙)𝑙𝑙∈𝑅𝑅(𝑡𝑡(𝑗𝑗))

𝑟𝑟

𝑗𝑗=1

 (A-5) 

In equation  (A-5), x is the vector of the covariates and ꞵ is the parameter estimate for the covariates. The 

summation in the denominator is the sum of the values of exp (𝛽́𝛽 𝑥𝑥𝑙𝑙) over all bridges at risk at time 𝑡𝑡(𝑗𝑗), 

and 𝑅𝑅(𝑡𝑡(𝑗𝑗)) is the bridge set at risk of transitioning to the lower CR. As shown in equation (A-5), the 

maximum likelihood will be smaller than unity as it is the product of several conditional probabilities. 

Consequently, “-2log L will always be positive, and for a given data set, the smaller the value of -2log L, 

the better the model.” [5] 

Table C-1 contains the statistic -2log L, and the likelihood ratio test which compares the model with a 

covariate with the null model using equation (A-6). 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = −2 log
𝐿𝐿1
𝐿𝐿2

 (A-6) 

In equation (A-6), L1 is the null model and L2 is the model with the covariate. The likelihood ratio test is 

asymptotically a chi-square distribution under the null hypothesis that the coefficient of the added 

covariate(s) is zero. The degree of freedom (DOF) for this distribution is equal to the difference between 

the number of covariates for the two models. If the value of this ratio is not large, the two models could be 

judged to be the same, but if the ratio is large, it indicates that the addition of the new covariate is needed 

in the model. The likelihood ratio test is compared with the theoretical chi-squared distribution with the 

same number of DOF and a predefined decision rule (say 5%). If the likelihood ratio test is larger than the 

critical value of the theoretical chi-squared distribution or alternatively the probability value associated with 

the likelihood ratio test is smaller than the predefined decision rule value, it shows that the extra covariate 

is needed in the model. For the cases where each covariate is added to the model one by one, the null model 

is compared with the new model with only one covariate (DOF=1) and the critical value for chi-square 
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distribution with one DOF is 3.84. Therefore, any likelihood ratio greater than 3.84 or any probability value 

smaller than the 0.05 indicates that the added covariate is statistically significant and needed in the model. 

Similarly, any value smaller than 3.84 indicates that the covariate is not significant when considered 

individually but may be significant when considered along with other covariates.  

Model development recommended by Collett (and outlined below) was followed for developing the model 

for bridge components and culverts and was supplemented by automatic variable selection [5]. 

1. Each covariate is added to the Cox regression independently, and its effect on deterioration is 
calculated by comparing the likelihood ratio test of the Cox regression when the covariate is 
included as compared with the null Cox model without the covariate in the model. In this step the 
statistical significance of each covariates applied independently is assessed.  

2. All covariates that were statistically significant at 15% in step 1 are modeled together. Some 
covariates may cease their significance in the presence of other covariates.  

3. Covariates that are no longer significant in step 2 are removed from the model one at a time, and 
their effect is calculated by comparing the log-likelihood of the full model – all covariates from 
step 2 included – to the log-likelihood from the model with the insignificant covariate discarded. 
If the discarded covariate does not affect the likelihood ratio test, it is discarded from the model. 

4. Covariates that were not significant independently in step 1 are added to the model from step 3 
one at a time to check if any covariate become significant in the presence of other covariates.  

5. Higher order terms of the covariates (x2, x3, …) and interaction terms are considered between the 
explanatory variables from step 3. The model from this step would be used further to verify 
model assumptions, goodness of fit test, and detecting outliers (if any). 

Model Assumptions 

There are two assumptions for the Cox regression model shown in equation (A-3). 1) the proportional 

hazard assumption – the hazards are not changing with time and 2) the explanatory variables are modeled 

with the correct functional form – x, x2, log(x), or √𝑥𝑥 . Tests are available to verify the assumptions and to 

take corrective actions in case of any violation. These tests are discussed in the following paragraphs.  

Proportional Hazard Assumption 
The proportional hazard (PH) assumption states that the covariates are not time dependent – the hazard is 

the same if a bridge’s TICR changes from 10 to 15 or from 30 to 35, i.e., no time dependence. There are 

several methods to check continuous covariates for the PH assumption: graphical, goodness-of-fit (GOF), 

Schoenfeld residuals, and time-dependent variable approaches [6]. The graphical and GOF has some 

drawbacks related to the number of observations and the censoring, but Schoenfeld residuals and the time-

dependent variable approach is preferred [2]. For example, to test a continuous covariate for the PH 

assumption using Schoenfeld residuals, the Schoenfeld residuals are computed for continuous covariates 

included in the model and plotted as the Schoenfeld residual against the function of time [12]. The time 

could be a simple function such as (t) where it corresponds to TICR for bridge components and culverts or 
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other functions of the time such as log (TICR). Fitting a curve on the scatter plot of the Schoenfeld residuals 

would reveal if the PH holds or not. A flat smooth curve near zero would suggest that the PH assumption 

is valid for the covariate.  

Another way of using the Schoenfeld residuals is to calculate its correlation coefficient with the function 

of time such as TICR, log (TICR), or TICR2 [2]. In this case, the assumption is that the Schoenfeld residuals 

are independent of time, therefore there should not be a statistically significant correlation coefficient. Here 

the null hypothesis is that there is no correlation between the function of time and the Schoenfeld residuals 

calculated for each continuous covariate at a specified significance level, say 5%. Hence, the alternate 

hypothesis is that correlation exists between the Schoenfeld residuals and the function of time. Thus, any 

correlation coefficient for a covariate smaller than 5% indicates that the PH does not hold for that covariate 

and correction measures should be employed. 

The PH assumption for categorical covariates is assessed using the K-M curve constructed for all the levels 

of the covariate included in the model [12]. For the PH assumption for the categorical covariates to hold, 

the levels of the covariates should not cross each other, look parallel, and be of a similar shape [12]. A 

different way than the graphical test would be to request test statistics across all the levels. 

Covariates Functional Form 
In the Cox regression model shown in equation (A-3), the covariates are assumed to be related to the hazard 

function as a simple linear function. This assumption should be verified before interpretating the Cox 

regression results. Martingale residuals is one of the most common ways to check the functional form of 

the continuous covariates [13]. “The residual can be interpreted as the difference over time of the observed 

number of events minus the expected number of events under the assumed Cox model” [13]. To find the 

functional form of a continuous covariate, the Cox model is fitted to all other covariates in the model except 

the covariate for which the functional form is to be determined. The Martingale residual is then plotted 

against the values of the covariate not included in the model and a smoothed curve is fitted to the scatter 

plot. The shape of the smoothed curve defines the actual functional form of the covariate to be included in 

the model [13]. Another common practice is to fit a null model – a model without any covariate - and output 

the Martingale residuals against each of the continues covariates identified for the model [12]. A smoothed 

curve fitted on the Martingale residuals indicate the functional form of the covariate to be used for building 

the model. A straight line or nearly straight line indicates that a linear relationship, x, hold between the 

independent variable and the covariate [12].  
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Detecting Influential Observations and Outliers 
Detecting influential observations on the parameter estimates (ꞵ) and outliers are two issues to be studied 

once a Cox regression model is fit. To detect the influence of each observation on a parameter estimate “is 

to compare the estimate ꞵ one obtains by estimating ꞵ from all the data, to the estimate ꞵ(j) obtained from 

the data with the given observation deleted from the sample” [13]. To determine the influence of an 

observation, ꞵ - ꞵ(j) , also known as dfbeta, dfꞵ, is calculated and if the value is close to zero, there is no 

influence from observation j on the parameter estimate, but if the value is large, it suggests an influence on 

the parameter estimate from observation j [13]. Another way to check for influence of individual 

observation is to compare dfꞵ with the parameter estimate. Influential observations could be detected by 

the score residuals, where it approximates b - b(j), and a plot of this residual against each covariate Xjk would 

reveal the effect of the jth observation on the covariate k [13]. A positive value of the dfꞵ, indicates that the 

exclusion of an observation reduces the parameter estimate and this implies that inclusion of an observation 

increases the parameter estimate [12]. In other words, dfꞵ is the measurement of the effect of an observation 

on the parameter estimate when the observation is included in the model [12]. 

Assessment of the Overall Model Fit 
There may be interest on the assessment of influential observations and outliers on parameter estimate for 

each covariate included in the model, but also on the overall fit of the model. To assess the effect of 

observations on the overall fit of the model, likelihood displacement could be generated from the model 

and then plotted against TICR for bridge components and culverts [12]. “The likelihood displacement score 

quantifies how much the likelihood of the model, which is affected by all coefficients, changes when the 

observation is left out.” [12] 

Predictive Accuracy of the Cox Regression 
“The predictive accuracy of a statistical model can be measured by the agreement between observed and 

predicted outcome.” [14] In Cox regression, concordance statistics, also called C-statistic, is one measure 

of accuracy. “The concept underlying concordance is that a subject who experiences a particular outcome 

has a higher predicted probability of that outcome than a subject who does not experience the outcome. The 

C-statistic can be calculated as the proportion of pairs of subjects whose observed and predicted outcomes 

agree (are concordant) among all possible pairs in which one subject experiences the outcome of interest 

and the other one does not. The number of pairs is calculated using �𝑛𝑛
2
�, where n is the number of 

observations in the data set. The higher the C-statistic, the better the model can discriminate between 

subjects who do experience the outcome of interest and subjects who do not.” [14] Harrell’s C-statistic is 

one of several concordance formulations that are used for survival analysis. The concordance statistics can 
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be calculated by using equation (A-7) where nc is the number of concordance observations, nt is the number 

of tied observations (same time events or identical covariates), and nd is the number of discordant 

observations. 

 𝐶𝐶 =  
𝑛𝑛𝑐𝑐 + 0.5 × 𝑛𝑛𝑡𝑡
𝑛𝑛𝑐𝑐 + 𝑛𝑛𝑑𝑑 + 𝑛𝑛𝑡𝑡

 (A-7) 

Another way of measuring the predictive accuracy of Cox regression is the receiver operator characteristic 

(ROC) and area under the ROC curve (AUC). “Time-dependent ROC curves and AUC functions 

characterize how well the fitted model can distinguish between subjects who experience an event from 

subjects who are event-free. Whereas C-statistics provide overall measures of predictive accuracy, time-

dependent ROC curves and AUC functions summarize the predictive accuracy at specific times. In practice, 

it is common to use several time points within the support of the observed event times. ” [14] 
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APPENDIX B. SUPERSTRUCTURE TYPES LISTED IN THE NBI 

Materials and Type of Construction  

Structure Kind and Structure Type  
Structure kind (043A) and structure type (043B) variables describe the materials of construction (e.g., steel, 

reinforced concrete, prestressed concrete, etc.) and construction type (e.g., simply supported, continuous, 

truss, girder, etc.). The combination of these two items was used to identify families of bridges with similar 

material and construction type for analysis.  

Table B-1 lists the number and kinds of state-owned bridge families. There were 56 different combinations 

of structure type and kind found in the inventory. The most common structure overall was found to be a 

continuous concrete culvert with 3,310 structures. The most common bridge types were bridges with steel 

superstructures, either continuous (2,645) or simple span (1,602), followed by prestressed concrete 

continuous structures (1,262).  

The three most common materials for bridge superstructure construction were steel, reinforced concrete 

(RC), and prestressed concrete (PSC). Considering all structure types for each of these materials, there were 

4,836 steel bridge, 5,558 RC bridges and culverts and 2,601 prestressed PSC bridges. 

It should be noted that the table includes all of the structures considered in the research, which included 

NBI records that spanned 37 yrs. The values shown in the table are not the current number of bridge or 

culverts, but rather the number of bridges and culverts included in the NBI over the 37 yrs addressed through 

the research.   
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Table B-1. Table list of different structures by type and kind. 1 
SI&A items 

SI&A description No. 
SI&A items 

SI&A description No. 
43A 43B 43A 43B 

2 19 Concrete continuous culvert 3,310 2 5 Concrete continuous box beam or girder - multiple 12 
4 2 Steel continuous stringer/multi beam girder 2,645 8 19 Masonry culvert 9 
3 2 Steel stringer/multi beam girder 1,602 3 12 Steel arch – thru 7 

6 2 Prestressed concrete continuous stringer/multi 
beam girder 1,262 3 9 Steel truss – deck 6 

1 4 Concrete tee beam 790 6 1 Prestressed concrete continuous slab 6 
2 1 Concrete continuous slab 767 1 6 Concrete box beam or girders - single or spread 5 
3 10 Steel truss – thru 423 4 14 Steel continuous stayed girder 5 
5 5 Prestressed concrete box beam or girder - multiple 384 2 7 Concrete continuous frame (except frame culverts) 4 
6 4 Prestressed concrete continuous tee beam 344 3 0 Steel other 4 
1 1 Concrete slab 247 0 2 Other stringer stringer/multi-beam or girder 3 
5 6 Prestressed concrete box beam or girder – single 201 4 12 Steel continuous arch – thru 3 

2 6 Concrete continuous box beam or girders - single 
or spread 193 4 6 Steel continuous box beam or girders - single or 

spread 3 

5 2 Prestressed concrete stringer/multiple-beam or 
girder  174 1 5 Concrete box beam or girders - multiple 2 

5 4 Prestressed concrete tee beam 169 2 2 Concrete continuous stringer/multi-beam or girder 2 
1 22 Concrete channel beam 120 4 19 Steel continuous culvert (includes frame culverts) 2 
4 3 Steel continuous girder and floor beam system 44 4 7 Steel continuous frame (except frame culverts) 2 
1 11 Concrete arch – deck 34 4 9 Steel continuous truss – deck 2 
7 2 Timber stringer/multi-beam or girder 34 0 19 Other culvert (includes frame culverts) 1 
3 19 Steel culverts 33 1 3 Concrete girder and floor beam system 1 
4 10 Steel continuous truss – thru 28 2 12 Concrete continuous arch - thru 1 

6 6 Prestressed concrete continuous box beam or 
girder – single 26 3 1 Steel slab 1 

3 3 Steel girder and floor beam system 25 3 13 Steel suspension 1 
1 7 Concrete frame (except frame culverts) 20 3 5 Steel box beam or girders - multiple 1 
2 4 Concrete continuous tee beam 20 3 7 Steel frame (except frame culverts) 1 
2 11 Concrete continuous arch - deck 18 4 13 Steel continuous suspension 1 
5 1 Prestressed concrete slab 18 6 21 Prestressed concrete continuous segmental box girder 1 

6 5 Prestressed concrete continuous box beam or 
girder – multiple 16 7 0 Timber other  1 

1 2 Concrete stringer/multi-beam or girder  12 8 11 Masonry arch – deck 1 
      Total number of bridges and culverts 13,047 

2 
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APPENDIX C. DATA ANALYSIS 

This appendix includes fundamental data from the Cox regression analysis for structures. The data in this 

section supplements the main body of the report. Data in this appendix is primarily intended for researchers 

interesting in the modeling methodologies used in this research.   

Reliability of CIP Bridge Decks  

The -2log L and the likelihood ratio for the covariates of the Cox regression model for CIP decks is shown 

in Table C-1. As shown in Table C-1, except for the ADT and ADTT, all other covariates are statistically 

significant when examined individually. It was found that ADT and ADTT did not have a statistically 

significant effect on the deterioration of CIP decks. 

Table C-1. Table showing maximum likelihood estimate for CIP deck covariates. 

Var. No. Variables in model -2log 𝑳𝑳�  Likelihood ratio  Result  
0 None 242,492.64  Null model 
1 Age in TICR 242,446.15 46.49 Significant 
2 Structure length (ft.) 242,479.71 13.99 Significant 
3 Maximum span length (ft.) 242,435.75 56.89 Significant 
4 Freeze/thaw (days/year) 242,455.34 37.30 Significant 
5 Snow (days/year) 242,463.27 29.36 Significant 
7 Salt (tons/lane miles) 242,419.31 73.33 Significant 
8 ADT 242,492.25 0.39 Not signi. 
9 ADTT 242,492.41 0.23 Not signi. 

10 District 242,398.57 94.07 Significant 
11 Region 242,442.91 49.73 Significant 
12 Superstructure type 242,228.75 263.89 Significant 

Table C-2 lists the effect of covariates on the performance of the CIP decks. This table presents the final 

results where all modeling steps have been completed and all assumptions and diagnosis were met. The 

first column lists the name of the covariate, the second column lists the parameter estimate (ꞵ�) for each 

covariate, the fourth column contains the standard error for the parameter estimate. The table also shows 

the chi-square value and probability value (p-value) comparing the chi-square from the fifth column to the 

critical value of theoretical chi-square value (3.84 for p-value of 0.05) for the single degree of freedom 

model. The p-value indicates if the covariates are statistically significant by recording the likelihood the 

chi-squared value exceeds the theoretical values simply by chance. Smaller values in this column indicate 

that the occurrence was not by chance but rather was statistically significant. Values greater than 0.5 

indicate the covariate was found not to be statistically significant.   

In Table C-2, the first five rows record the results for the categorical covariate superstructure type. The 

superstructure type steel cont. girders is not listed but rather acts as the reference for the other combinations 

of deck and superstructure type. Each of the five superstructure types shown have a parameter estimate and 
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associated standard error that was used to construct the confidence interval for the parameter estimate. The 

last column for the first five rows shows that the performance of the CIP decks on different superstructure 

types is different as indicated by the p-value less than 0.05 or 5%.  

Row 6 lists the parameter of the age in TICR and rows 7-11 contain the interaction of age in TICR with the 

different superstructure types. The interaction of age in TICR with superstructure types demonstrates that 

age affects the performance of the CIP decks on different superstructure types differently for most 

superstructure types. The only exception is CIP decks on the PSC continuous girders where the p-value is 

greater than 0.05. This shows that the performance of the CIP deck on PSC continuous girders may not be 

statistically different than CIP deck on the reference superstructure type – steel continuous girders. 

However, these data indicate that there is a statistical difference between the effect of age on deterioration 

of bridge decks (other than for PSC); the effect is relatively small, and the negative value for the parameter 

estimate indicates that the performance is better as compared to compared to CIP decks on continuous steel 

superstructures.  

Table C-2. Table showing Cox regression model output for CIP decks. 

No. Covariate 
Parameter 

estimate (ꞵ�) 
Standard 

error Chi-square P-value 

1 RCC slabs 0.197 0.049 15.83 <.0001 
2 CIP deck on RCC beams 0.336 0.061 30.40 <.0001 
3 CIP deck on steel girders 0.252 0.057 19.61 <.0001 
4 CIP deck on PSC cont. girders 0.110 0.046 5.592 0.018 
5 CIP deck on PSC box beams 0.900 0.058 239.2 <.0001 
6 Age in TICR 0.022 0.001 391.7 <.0001 
7 Age in TICR*RCC slabs -0.015 0.001 101.1 <.0001 
8 Age in TICR*CIP deck on RCC beams -0.021 0.002 194.3 <.0001 
9 Age in TICR*CIP deck on steel girders -0.013 0.001 87.79 <.0001 

10 Age in TICR*CIP deck on PSC cont. girders -0.002 0.003 0.403 0.525 
11 Age in TICR*CIP deck on PSC box beams -0.028 0.004 44.34 <.0001 

Table C-3. contains the effect of district on the performance of the CIP decks. The northeast (NE) district 

is not listed in the table because this categorical covariate was selected as the reference. From the p-value 

column it is evident that CIP decks located in different districts perform differently in most cases. The 

exception is the for the KC district that has a p-value of 0.059, which is close to 0.05. It should be noted the 

choosing the p-value of 0.05 is a subjective choice that is the normal convention for this type of analysis. 

A different value could be selected. For example, the 0.05 p-value indicates a 1 in 20 chance that differences 

could be the result of chance and therefore not statistically significant. If a p-value of 0.10 was chosen, it 

would mean that there is a 1 in 10 chance the difference could be the result of chance, a less rigorous 

threshold. Consequently, these data don’t indicate there wasn’t any difference at all between the KC district 

and the NE district, only that the difference did not meet the statistical test at the level being used in the 

analysis.  
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Row 7 in Table C-3. lists the effect of salt on the performance of the CIP decks and rows list the interaction 

of salt with each of the six levels of the district covariates, with the NE district again acting as the reference. 

The p-value column for rows 8-13 indicates that the effect of salt in NW, CD, and SW is different than the 

effect of salt in NE as demonstrated by the smaller p-values. In contrast, the effect of salt in KS, SL, and 

SE is not different than the effect of salt in NE as shown by the p-values greater than 0.05.  

Table C-3. Table showing Cox regression analysis for districts and the effect of different levels of 
salt application.  

No. Covariate 
Parameter 

estimate (ꞵ�) 
Standard 

error Chi-square P-value 

1 NW -1.388 0.538 6.643 0.010 
2 KC -1.078 0.572 3.558 0.059 
3 CD -2.567 0.475 29.17 <.0001 
4 SL -1.188 0.454 6.844 0.008 
5 SW -2.365 0.475 24.78 <.0001 
6 SE 1.320 0.621 4.511 0.033 
7 Salt (tons/lane miles) -0.108 0.132 0.667 0.414 
8 Salt*NW 0.546 0.193 8.000 0.005 
9 Salt*KC 0.212 0.161 1.732 0.188 

10 Salt*CD 1.028 0.171 35.93 <.0001 
11 Salt*SL 0.193 0.134 2.072 0.150 
12 Salt*SW 1.240 0.191 42.16 <.0001 
13 Salt*SE -0.547 0.426 1.646 0.199 

Table C-4 reports data on the effect of freeze/thaw cycles on the performance of the CIP decks. The 

parameter estimate for this covariate is negative, which indicates that increasing the number of freeze/thaw 

cycles reduces the hazard of deterioration. This result is not consistent with most experience and research 

that indicates increasing freeze/thaw cycles results in increased deterioration over time [15]. The increased 

deterioration would be expected to increase the hazard of deterioration, but the results showed the opposite. 

Rows 2-5 show the statistically significant interaction effect of salt and freeze/thaw cycles, snow, and the 

interaction effect of snow and salt. The interaction of snow and salt together also has a negative parameter 

estimate, indicating that when these covariates were considered together, the effect was to reduce the hazard 

of damage.  
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Table C-4. Table showing the results of the Cox regression for covariates of freeze/thaw, salt, and 
snow days.  

No. Covariate 
Parameter 

estimate (ꞵ�) 
Standard 

error Chi-square P-value 

1 Freeze/thaw (days/year) -0.062 0.004 198.0 <.0001 
2 Salt * freeze/thaw 0.010 0.001 50.12 <.0001 
3 Snow (days/year) 0.070 0.006 130.9 <.0001 
4 Salt*snow -0.012 0.002 31.50 <.0001 

Statistical Data  
This section documents that data on which the statistical analysis is based. These data are provided to 

document the project data for the record, for future researchers, and for those looking for additional insight 

into the characteristic of the dataset on which the analysis is based. Similar sections documenting the dataset 

are included in the report for superstructures, substructures, and culverts.  

Table C-5 includes statistical data for the covariates used in the analysis for CIP decks on different types 

of superstructures. This includes the covariate name, the count or number of instances that were available 

for analysis, and the general statistics for each covariate. The general statistics provide an overview of the 

typical values and variation in the data used in the analysis. This includes the median value where 50% of 

the population is above and 50% below the median value, and the mean (average). The mode records the 

most frequently occurring value. Table C-6 shows general statistics for salt application. Other tables in this 

appendix address the covariate values for superstructures, substructures, and culverts. 
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Table C-5. Table showing general statistics for continuous covariates for CIP decks. 

Superstructure 
type Covariate name Count 

General statistics (year) 
Median Mode Mean STD 

All (regardless of 
the superstructure 

type) 

Age 

8,232 

50 54 47 25.3 
Structure length (ft.) 176 113 234 289.5 

Maximum span length (ft.) 60 60 67.4 37.2 
Condition rating 6 7 6.2 1.2 

CIP decks on steel 
simple girders 

Age 

1,564 

64 56 65.4 15.4 
Maximum span length (ft.) 41 49 43.2 21.1 

Structure length (ft.) 107 95 125.6 105.6 
Condition rating 6 6 5.6 1.2 

CIP decks on steel 
cont. girders 

Age 

2626 

48 50 44.3 15.1 
Maximum span length (ft.) 85 70 94.2 43.7 

Structure length (ft.) 253 264 356.3 424.2 
Condition rating 7 7 6.4 1.1 

CIP decks on PSC 
cont. girders 

Age 

1,685 

23 24 24.3 12.7 
Maximum span length (ft.) 66 90 68.4 18.0 

Structure length (ft) 196 146 242.5 209.0 
Condition rating 7 7 7.2 0.6 

CIP decks on PSC 
box beams 

Age 

649 

9 8 17.1 15.1 
Maximum span length (ft.) 69 60 75 33.6 

Structure length (ft.) 151 106 218.1 227.7 
Condition rating 7 7 7 0.7 

RCC slabs 

Age 

989 

54 51 55.4 37 
Maximum span length (ft.) 46 56 44 18.4 

Structure length (ft.) 135 67 144 132 
Condition rating 6 6 6.2 1 

RCC girders 

Age 

1,019 

65 58 67 16.4 
Maximum span length (ft.) 47 43 52.3 22.2 

Structure length (ft.) 138 128 169.3 128.7 
Condition rating 6 6 5.5 1.2 

 

 

Table C-6. Table showing general statistics for salt application. 

Covariate Covariate  Count General statistics (year) 

Salt (tons/lane mile) 

NW 9,810 2.9 2.0 2.7 0.8 
NE 11,385 2.2 4.4 2.9 1.2 
KC 7,931 4.3 4.9 4.2 1.3 
CD 11,568 2.9 4.4 2.6 1.1 
SL 5,951 5.0 10 5.1 2.2 
SW 16,206 2.2 2.8 2.1 0.8 
SE 14,697 1.2 2.2 1.2 0.4 

Table C-7 shows additional background data used for the analysis of CIP decks on different types of 

superstructures. These data illustrate the number of instances for each CR for each superstructure type. The 

table also records the SI&A items 43A and 43B for the superstructure type and its name. The number of 

instances for each CR for each superstructure type provides information on the size of the dataset used in 

calculating the TICR and other analysis in the report. 
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Table C-7. Number of different superstructure types with CIP decks in CR 3 – 8. 1 

SI&A 
items SI&A description 

# of bridges/culverts in each CR SI&A 
items SI&A description 

# of bridges/culverts in 
each CR 

43A 43B 3 4 5 6 7 8 43A 43B 3 4 5 6 7 8 

4 2 St. cont. stringer/multi beam girder 324 528 856 1,629 2,039 1,072 2 5 RC cont. box beam or girder - 
multiple 4 8 6 3 3 0 

3 2 St stringer/multi-beam girder 390 629 883 1,047 700 235 3 12 ST – thru 0 1 1 2 5 1 
1 4 RC tee beam 155 279 416 461 249 51 3 9 ST truss – deck 2 1 3 2 0 1 
2 1 RC cont. slab 31 83 202 537 532 269 6 1 PSC continuous slab 0 0 0 2 1 2 

3 10 St. truss – thru 102 149 202 222 105 18 1 6 RC box beam or girders - single or 
spread 0 0 1 5 5 0 

6 2 PSC cont. stringer/multi beam girder 5 6 15 132 874 638 4 14 ST cont. stayed girder 0 0 0 0 3 1 

5 4 PSC tee beam 2 5 4 6 66 43 2 7 RC cont. frame (except frame 
culverts) 3 1 3 1 2 0 

1 22 RC channel beam 16 55 71 64 37 10 3 0 ST other 0 1 0 1 0 0 

2 6 RC cont. box beam or girders - single or 
spread 20 52 97 152 111 42 0 2 Other stringer stringer/multi-beam or 

girder 0 0 0 0 0 2 

6 4 PSC cont. tee beam 2 8 7 27 235 95 4 12 ST cont. arch – thru 1 1 0 1 2 1 

1 1 RC slab 38 60 87 120 67 18 4 6 ST cont. box beam or girders - single 
or spread 0 1 0 0 2 2 

5 6 PSC box beam or girder – single 0 1 1 20 64 65 1 5 RC box beam or girders - multiple 0 0 0 0 0 0 
5 2 PSC stringer / multiple-beam or girder 4 1 4 22 85 72 2 2 RC cont. stringer/multi-beam or girder 1 0 0 0 1 1 
5 5 PSC box beam or girder - multiple 0 3 3 4 16 8 4 7 ST cont. frame (except frame culverts) 0 1 1 1 2 2 
4 3 St cont. girder and floor beam system 2 7 14 27 38 17 4 9 ST cont. truss – deck 1 1 1 1 0 0 
1 11 RC – deck 4 6 12 13 8 0 1 3 RC girder and floor beam system 0 1 0 0 0 0 
3 3 St girder and floor beam system 6 12 15 12 4 1 2 12 RC cont. arch - thru 1 0 0 0 0 0 
1 7 RC frame (except frame culverts) 2 4 9 9 11 0 3 1 ST slab 0 0 0 0 1 0 
2 4 RC continuous tee beam 3 12 10 10 6 2 3 13 ST suspension 0 0 0 0 0 0 
2 11 RC continuous arch - deck 3 5 9 12 3 1 3 5 ST box beam or girders - multiple 0 0 0 0 1 1 
5 1 Prestressed concrete slab 0 7 6 5 2 1 3 7 ST frame (except frame culverts) 0 0 0 1 0 0 
7 2 TR stringer/multi-beam or girder 0 1 3 2 0 0 4 13 ST cont. suspension 0 0 0 1 0 0 
4 10 ST cont. truss – thru 6 9 9 15 12 8 6 21 PSC cont. segmental box girder 0 0 0 0 1 0 
6 6 PSC cont. box beam or girder – single 0 0 0 0 9 12 7 0 TR other  0 1 0 0 0 0 

6 5 PSC continuous box beam or girder – 
multiple 0 1 1 2 12 5 8 11 Masonry arch – deck 0 0 0 0 1 0 

1 2 RC stringer / multi-beam or girder 1 2 2 5 5 0          
2 
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Reliability Analysis for Superstructures 

This section of the report documents results of statistical analysis for different bridge superstructure types.  

Table C-8 shows different types of superstructures, their count, and their combination for analysis. Table 

C-9 shows the effect of covariates on the performance of superstructures when assessed individually. 

Table C-8. Table showing different types of superstructures, their count, and their combination for 
analysis. 

SI&A items 
SI&A description Count Analysis data set Combined 

count 43A 43B 
4 2 Steel continuous stringer/multi beam girder 2,645 Steel cont. girders 2,645 
3 2 Steel stringer/multi beam girder 1,602 Steel simple girders 1,602 

5 2 Prestressed concrete stringer/multiple-beam or 
girder  174 

PSC cont. girders 1,436 
6 2 Prestressed concrete continuous stringer/multi 

beam girder 1,262 

1 1 Concrete slab 247 
RCC slabs 1,014 

2 1 Concrete continuous slab 767 
1 4 Concrete tee beam 790 

RCC girders 1,022 

2 4 Concrete continuous tee beam 20 
1 6 Concrete box beam or girders - single or spread 5 
1 5 Concrete box beam or girders - multiple 2 

2 6 Concrete continuous box beam or girders - single 
or spread 193 

2 5 Concrete continuous box beam or girder - 
multiple 12 

5 4 Prestressed concrete tee beam 169 

PSC box beams 1140 

6 4 Prestressed concrete continuous tee beam 344 

5 5 Prestressed concrete box beam or girder - 
multiple 384 

5 6 Prestressed concrete box beam or girder – single 201 

6 5 Prestressed concrete continuous box beam or 
girder – multiple 16 

6 6 Prestressed concrete continuous box beam or 
girder – single 26 

Total number 8,859 
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Table C-9. Table showing the effect of covariates on the performance of superstructures by their 
own. 

Var. 
No. Variables in model -2log 𝑳𝑳�  Likelihood 

ratio  Result  

0 None 234,158.95 - Null model 
1 District 234,030.87 128.08 Significant 
2 Region 234,134.09 24.86 Significant 
3 Superstructure type 233,745.38 413.57 Significant 
4 Waterway 234,145.74 13.22 Significant 
5 Age in TICR 234,074.55 84.40 Significant 
6 Structure length (ft.) 234,135.44 23.52 Significant 
7 Maximum span length (ft.) 234,110.21 48.74 Significant 
8 Freeze/thaw (days/year) 233,962.90 196.06 Significant 
9 Snow (days/year) 234,156.10 2.85 Not sign. 
10 Salt (tons/lane miles) 234,078.35 80.60 Significant 
11 ADT 234,158.67 0.28 Not sign. 
12 ADTT 234,158.95 0 Not sign. 

Table C-10 lists the output for the Cox regression model built for superstructures. The description of this 

table is similar to Table C-2 for Cox regression output for CIP decks presented earlier. For superstructures, 

the reference covariate was steel continuous girders, so this covariate does not appear in Table C-10.  Those 

covariates (or combinations of covariates) that are nonsignificant are shaded in the table.  

Table C-10. Table showing the Cox regression output for superstructures. 

No. Parameter DF 
Parameter 

estimate (ꞵ�) 
Standard 

error Chi-square P-value 

1 RCC slabs 1 0.346 0.113 9.385 0.002 
2 RCC girders 1 0.875 0.126 46.40 <.0001 
3 Steel simple girders 1 0.582 0.089 42.69 <.0001 
4 PSC cont. girders 1 0.220 0.109 4.051 0.044 
5 PSC box beams 1 0.304 0.104 8.492 0.004 
6 Age in TICR 1 0.021 0.001 286.9 <.0001 
7 Age in TICR*RCC slabs 1 -0.016 0.002 69.91 <.0001 
8 Age in TICR*RCC girders 1 -0.023 0.002 145.3 <.0001 
9 Age in TICR*steel girders 1 -0.010 0.002 43.03 <.0001 
10 Age in TICR*PSC cont. girders 1 0.0005 0.003 0.029 0.864 
11 Age in TICR*PSC box beams 1 -0.017 0.004 22.94 <.0001 
12 Maximum span length  1 0.003 0.0003 114.7 <.0001 
13 Maximum span length*RCC slabs 1 -0.00007 0.002 0.002 0.962 
14 Maximum span length*RCC girders 1 0.006 0.001 22.09 <.0001 
15 Maximum span length*Steel girders 1 -0.003 0.001 9.890 0.002 
16 Maximum span length*PSC cont. girders 1 0.002 0.001 3.026 0.082 
17 Maximum span length*PSC box beams 1 0.010 0.001 93.38 <.0001 

Table C-11 shows the Cox regression output for superstructures in different districts, the covariate of salt 

application and the interaction of salt application with districts to assess if the effect of salt is different in 

different districts. The reference district was the NE district.  
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Table C-11. Table showing Cox regression analysis output for superstructures.  

No. Parameter DF 
Parameter 

estimate (ꞵ�) 
Standard 

error Chi-square P-value 

1 NW 1 -1.224 0.266 21.14 <.0001 
2 KC 1 -0.645 0.649 0.988 0.320 
3 CD 1 -1.917 0.538 12.70 0.0004 
4 SL 1 -0.337 0.152 4.900 0.023 
5 SW 1 1.434 0.195 53.68 <.0001 
6 SE 1 -1.378 0.394 12.23 0.0005 
7 Salt (tons/lane miles) 1 0.634 0.141 20.26 <.0001 
8 Salt*NW 1 -1.224 0.266 21.14 <.0001 
9 Salt*KC 1 -0.060 0.184 0.106 0.745 
10 Salt*CD 1 0.790 0.192 16.82 <.0001 
11 Salt*SL 1 -0.337 0.152 4.900 0.027 
12 Salt*SW 1 1.434 0.196 53.68 <.0001 
13 Salt*SE 1 -1.378 0.394 12.23 0.0005 

Table C-12 shows the general statistics for superstructures based on the construction materials and type. 

These data indicate the values for the covariates used in the analysis. The values listed in the table indicate 

median, mode, average, and standard deviation for different covariates such as age, maximum span length, 

etc., subdivided by materials and construction type such as continuous steel girders, steel girders, etc.  
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Table C-12. Table showing general statistics for superstructures based on construction material 
and construction type. 

Covariate name Superstructure type Count General statistics  
Median Mode Average STD 

Age (years)  

Steel continuous girders 2,517 49 54 46 14 
Steel girders 1,562 64 58 67 15 

PSC cont. girders 1,177 25 24 26 12 
PSC box beams 658 9 8 17 15 

RCC slabs 984 53 51 55 37 
RCC beams 1,013 64 61 67 17 

Maximum span length 
(ft.) 

Steel continuous girders 2,517 83 70 93 43 
Steel girders 1,562 40 49 43 20 

PSC cont. girders 1,177 67 90 69 18 
PSC box beams 658 75 60 74 31 

RCC slabs 984 45 56 44 18 
RCC beams 1,013 47 43 52 22 

Structure length (ft.) 

Steel continuous girders 2,517 250 164 354 427 
Steel girders 1,562 107 107 125 106 

PSC cont. girders 1,177 202 146 251 221 
PSC box beams 658 137 90 192 206 

RCC slabs 984 135 67 144 131 
RCC beams 1,013 138 128 169 129 

Number of span 

Steel continuous girders 2,517 3 3 4 3 
Steel girders 1,562 3 3 3 3 

PSC cont. girders 1,177 3 3 4 3 
PSC box beams 658 3 3 3 2 

RCC slabs 984 3 3 4 2 
RCC beams 1,013 3 3 3 2 

Average condition 
rating 

Steel continuous girders 2,517 7 7 7 1 
Steel girders 1,562 7 6 6.6 1 

PSC cont. girders 1,177 7 7 7 1 
PSC box beams 658 7 7 7 1 

RCC slabs 984 6 6 6 1 
RCC beams 1,013 6 6 5.5 1 

ADT 

Steel continuous girders 2,517 3,500 11,000 8,386 14,747 
Steel girders 1,562 490 200 2,796 12,047 

PSC cont. girders 1,177 4,538 11,000 9,264 15,845 
PSC box beams 658 1,506 210 4,875 11,415 

RCC slabs 984 4,877 5,500 12,444 19,803 
RCC beams 1,013 2,140 5,500 8,031 15,671 

ADTT 

Steel continuous girders 2,517 401 1,100 1,145 1,978 
Steel girders 1,562 52 19 340 1,444 

PSC cont. girders 1,177 559 1,100 1,178 1,983 
PSC box beams 658 167 20 601 1,405 

RCC slabs 984 561 550 1,552 2,473 
RCC beams 1,013 239 550 963 1,943 
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Table C-13. Table showing general statistics for salt application used for superstructure analysis.  

Covariate name Superstructure type Count General statistics  
Median Mode Average STD 

Salt (tons/lane mile) 

NE 9,810 2.2 4.4 2.9 1.3 
NW 11,385 2.9 2 2.7 0.8 
KC 7,931 4.3 4.9 4.2 1.3 
CD 11,568 2.8 3.5 2.6 1.1 
SL 5,951 5 10.1 5.1 2.2 
SE 16,206 1.2 0.7 1.2 0.4 
SW 14,697 2.2 2.8 2.1 0.8 

 
Reliability Analysis for Substructures 

The final Cox regression model for substructures after investigating the influential observations and outliers 

are shown in Table C-14.  

 
Table C-14. Table showing the Cox regression output for substructures. 

No. Parameter DF 
Parameter 

estimate (ꞵ�) 
Standard 

error Chi-square P-value 

1 Age in TICR 1 0.006 0.001 99.40 <.0001 
2 NW 1 -2.848 0.538 28.06 <.0001 
3 KC 1 -0.708 0.577 1.508 0.220 
4 CD 1 -2.246 0.445 25.44 <.0001 
5 SL 1 -0.0637 0.356 0.032 0.858 
6 SW 1 -4.033 0.392 105.5 <.0001 
7 SE 1 1.387 0.510 7.395 0.006 
8 Salt (tons/lane miles) 1 0.901 0.096 90.83 <.0001 
9 Salt*NW 1 1.092 0.193 32.12 <.0001 
10 Salt*KC 1 -0.115 0.152 0.575 0.448 
11 Salt*CD 1 0.988 0.162 37.11 <.0001 
12 Salt*SL 1 -0.312 0.104 9.019 0.003 
13 Salt*SW 1 2.208 0.159 193.2 <.0001 
14 Salt*SE 1 -0.001 0.355 0.000 0.998 
15 Structure length (ft.) 1 0.0001 0.00001 33.83 <.0001 
16 Waterway 1 0.105 0.019 28.00 <.0001 

 
The statistically significant covariates are age in TICR, salt, district, structure length, whether a bridge is 

located on a waterway or not, and interaction of district with salt. 

The effect of the categorical covariate district is a relative effect. As shown in Table C-14, six of the seven 

districts are listed and district Northeast (NE) is not listed, because it is selected as a reference district and 

other districts are compared to NE. The parameter estimates for the six districts show the extent of hazard 

either larger than NE, as is the case for Southeast (SE), or smaller than NE, as is the case for all other five 

districts.  
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In row 16 of Table C-14 the covariate waterway is a categorical covariate comparing the reliability of 

substructure located on a waterway to those that are not located on a waterway. The reference level is 

substructures not located on a waterway and the parameter estimate for substructures located on a waterway 

is 0.105 relative to substructures not located on a waterway. The hazard ratio for these two categories of 

substructures is e0.105=1.11, or substructures located on a waterway has 11% more hazard of deteriorating 

to lower CRs than those not located on a waterway. Inverting the hazard ratio shows that substructures not 

located on a waterway has 90% of the hazard of substructures located on a waterway. The hazard ratio for 

all covariates as well as the confidence interval for the hazard ratios are listed in the main body of the report. 

Table 24 shows the effect of covariates on substructures. 

The general statistics for substructure are listed in Table C-15. Table C-16 shows the general statistical data 

related to salt application in the different districts. 

Table C-15. Table showing general statistics for substructures. 

Covariate name Count General statistics (year) 
Median Mode Average STD 

Age  8,728 53 54 50.2 24.6 
Structure length (ft.) 8,728 170 113 251.7 400.8 

Number of spans 8,728 3 3 3.4 2.6 
Average condition rating 8,728 7 7 6.6 1.2 

 
 
Table C-16. Table showing the general statistical data related to salt application in the different 
districts. 

Covariate name Count General statistics (year) 
Median Mode Average STD 

Salt (tons/lane miles) 

NE 9,810 2.2 4.4 2.9 1.2 
NW 11,385 2.9 2.0 2.7 0.8 
KC 7,931 4.3 4.9 4.2 1.3 
CD 11,568 2.8 3.5 2.6 1.1 
SL 5,951 4.9 10.1 5.1 2.2 
SE 16,206 1.2 2.2 1.2 0.4 
SW 14,697 2.2 2.8 2.2 0.8 

Number of bridges over a waterway and not over a waterway 
Number of bridges over a waterway 6,227 Number of bridges not over a waterway 2,501 

 
Reliability Analysis for Culverts 

The effect of the covariates on the reliability, or survival, of the culverts are investigated using the Cox 

regression and presented in following paragraphs. Before beginning the statistical analysis of the effect of 

covariates on deterioration of the culverts, general information about the covariates is provided first in 

Table C-17. The distribution of the concrete continuous culverts for districts is shown in the lower part of 

Table C-17 as well. The covariates considered for data analysis of concrete continuous culverts are structure 
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length (ft.), maximum span length (ft.), amount of salt used for deicing purposes (tons/lane miles), 

freeze/thaw cycles (days/year), snow (days/year), ADT, ADTT, and district.  

Table C-17. Table showing general statistics for culverts. 

Covariate name Count General statistics (year) 
Median Mode Average STD 

Age  

3,262 

62 59 61.4 22.1 
Structure length (ft.) 27 25 30.6 11.0 

Average condition rating 6 6 6.6 0.9 
Snow (days/year) 42 41 41.4 9.4 

ADT 853 754 4,662 12,901 
ADTT 91 77 464 1,773 

Salt (tons/lane miles) 

NE 9,810 2.2 1.9 2.9 1.2 
NW 11,385 2.9 4.4 2.7 0.8 
KC 7,931 4.3 4.9 4.2 1.3 
CD 11,568 2.8 4.4 2.6 1.1 
SL 5,951 5.0 10.1 5.1 2.2 
SE 16,206 1.2 2.2 1.2 0.4 
SW 14,697 2.2 3.3 2.1 0.8 

Number of culverts for districts 
District name Counts of culverts District name Counts of culverts 

Northwest 370 St. Louis 226 
Northeast 419 Southwest 688 

Kansas City 260 Southeast 807 
Central 492   

Table C-18 shows the result of the Cox regression analysis for concrete continuous culverts for each of the 

covariates individually, and the result is compared with the null model (no covariate in the model). This 

initial analysis shows whether a covariate is statistically significant by its own, and a non-significant 

covariate may become significant in the presence of other covariates when all covariates are included in the 

model. The model building procedure described in the model development section is followed to build the 

Cox regression model for concrete continuous culverts. 
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Table C-18. Table showing the result for Cox regression analysis of individual covariates for 
culverts. 

Var. No. Variables in model -2log 𝑳𝑳�  Likelihood 
ratio  Result  

0 None 101,231.73 Null model  
1 Age in TICR 100,989.30 13.81 Significant 
2 District 100,919.60 83.51 Significant 
3 Structure length (ft.) 100,972.83 30.28 Significant 
4 Maximum span length (ft.) 100,998.55 4.57 Significant 
5 Freeze/thaw cycle (days/year) 101,002.41 0.71 Not sig. 
6 Snow (days/year) 100,987.72 15.40 Significant 
7 Salt (tons/lane miles) 100,987.16 15.95 Significant 
8 ADT 101,000.34 2.77 Not sig. 
9 ADTT 101,001.56 1.55 Not sig. 

The final output for Cox regression model for concrete continuous culverts is shown in Table C-19. 

Description of Table C-19 is similar to the one provided for CIP decks in Table C-2. The parameter 

estimates from Table C-19 were used to calculate the hazard ratios for all covariates listed in this table and 

the hazard ratios are listed in Tables 26 and 27. 

 
Table C-19. Table showing the Cox regression output for culverts. 

No. Parameter DF 
Parameter 

estimate (ꞵ�) 
Standard 

error Chi-square Pr > chi-
square 

1 Age in TICR 1 0.003 0.001 17.61 <.0001 
2 NW 1 1.641 1.334 1.514 0.218 
3 KC 1 1.482 1.648 0.808 0.369 
4 CD 1 2.698 0.837 10.39 0.001 
5 SL 1 2.004 0.844 5.631 0.017 
6 SW 1 5.815 0.690 70.96 <.0001 
7 SE 1 5.873 0.926 40.24 <.0001 
8 Salt (tons/lane miles) 1 1.533 0.198 59.73 <.0001 
9 Salt*NW 1 -0.501 0.484 1.070 0.301 
10 Salt*KC 1 -0.721 0.404 3.184 0.074 
11 Salt*CD 1 -0.783 0.310 6.403 0.011 
12 Salt*SL 1 -0.9275 0.212 19.20 <.0001 
13 Salt*SW 1 -2.051 0.286 51.24 <.0001 
14 Salt*SE 1 -2.716 0.661 16.89 <.0001 
15 Structure length (ft.) 1 0.008 0.001 37.85 <.0001 
16 Snow (days/year) 1 0.022 0.005 20.96 <.0001 
17 Snow*salt 1 -0.004 0.002 4.450 0.035 
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APPENDIX D. RELIABILITY AND SERVICE LIFE GRAPHS FOR CIP DECKS 
BY MODOT DISTRICT 

This appendix includes the reliability and service life graphs for CIP decks in each of the MoDOT districts. 
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Figure D-1. Plot showing the reliability and median service life graphs for CIP decks in CR 8-3 located in Northwest district. 
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Figure D-2. Plot showing the reliability and median service life graphs for CIP decks in CR 8-3 located in Northeast district. 
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Figure D-3. Plot showing the reliability and median service life graphs for CIP decks in CR 8-3 located in Kansas City district. 
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Figure D-4. Plot showing the reliability and median service life graphs for CIP decks in CR 8-3 located in Central district. 
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Figure D-5. Plot showing the reliability and median service life graphs for CIP decks in CR 8-3 located in St. Louis district. 
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Figure D-6. Plot showing the reliability and median service life graphs for CIP decks in CR 8-3 located in Southwest district. 
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Figure D-7. Plot showing the reliability and median service life graphs for CIP decks in CR 8-3 located in Southeast district. 
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APPENDIX E. RELIABILITY AND SERVICE LIFE GRAPHS FOR CIP DECKS 
BY SUPERSTRUCTURE TYPES 
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Figure E-1. Plots showing the reliability graph for CIP decks on steel simple girders (left) and service life (right). 
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Figure E-2. Plots showing the reliability graph for CIP decks on steel continuous girders (left) and service life (right). 
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Figure E-3. Plots showing CIP decks reliability graph on PSC continuous girders (left) and service life (right). 
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Figure E-4. Plots showing the reliability graph for CIP decks on PSC box beams (left) and service life (right). 

 

 



E-5 

 

Figure E-5. Plots showing the reliability graph for CIP decks on RCC girders (left) and service life (right). 
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Figure E-6. Plot showing the reliability graph for RCC slabs (left) and service life (right). 

 



F-1 

APPENDIX F. RELIABILITY AND SERVICE LIFE GRAPHS FOR 
SUPERSTRUCTURE TYPES 

This section contains the reliability and service life graphs for superstructures.
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Figure F-1. Plot showing the reliability graph for steel simple girders (left) and service life (right). 
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Figure F-2. Plot showing the reliability graph for steel continuous girders (left) and service life plot (right). 
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Figure F-3. Plot showing the reliability graph for PSC continuous girders (left) and service life plot (right). 
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Figure F-4. Plot showing the reliability graph for PSC box beams (left) and service life plot (right). 
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Figure F-5. Plot showing the reliability graph for RCC slabs (left) and service life plot (right). 
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Figure F-6. Plot showing the reliability graph for RCC girders (left) and service life plot (right). 
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APPENDIX G. MODEL VERIFICATION 

The following appendix includes the verification process for the Cox regression model used in the research.  

This includes verifying the functional form of the covariates, checking the proportional hazard assumption, 

assessing the influence of outliers, verifying the overall fit of the models, and checking the predictive 

accuracy of the model. The results of the verification processes are graphical in nature, and results are 

presented as figures illustrating the fit of the curves. The verification for the CIP deck Cox model is 

presented first with some text describing the results. For other bridge components and culverts, only the 

graphical results are presented. 

The results in this appendix are provided for two reasons. First, to demonstrate that the Cox regression 

results presented in the research have been rigorously validated using statistical methods. Second, the 

results are presented for use by future researchers exploring the use of Cox regression methodologies to 

analyze bridge deterioration.   

Checking Model Assumptions for CIP Decks 

Functional Form of the Covariates 
To determine the correct functional form of continuous covariates, the Martingale residual was requested 

from the null model for CIP decks – a model without any covariates. The residual is plotted against the 

covariate and a smoothed curve is fitted on the plot. The shape of the smoothed curve shows the shape of 

the relationship between the dependent variable and the covariate. Initially, it is assumed that the hazard is 

related to the exponentiated linear function of the covariates and if the smoothed curve is linear without any 

defined shape, then the assumption is valid. Otherwise, the shape of the smoothed curve indicates the true 

relationship between the dependent variable and the covariate. For reading further about this, please refer 

to the Appendix A section titled “MODEL ASSUMPTIONS” and the references provided therein. As 

shown in Figure G-1, the martingale residual is plotted against the covariate TICR, a covariate used to 

investigate the effect of age of the bridge components on bridge deterioration. There are four plots with 

different smoothing coefficients. The smoothing coefficient for top left-hand plot is 0.2, and as shown the 

smoothed curve is oscillating around zero and overfitting the smoothed curve [12]. But as the smoothing 

coefficient increases the overfitting problem is resolved and as shown in the lower right-hand plot, the 

smoothed plot is linear and flat for the smoothing coefficient of 0.8. This indicates that the exponentiated 

linear relationship between covariate for time in CR and the dependent variable TICR is valid.  
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Figure G-1. Plot showing martingale residuals with smooths for age in TICR for CIP decks. 
The martingale residual plot for the maximum span length, which investigates the effect on CIP deck 

deterioration, is shown in Figure G-2. The plot for the smoothing coefficient of 0.8 shows a flat line passing 

through zero, which indicates the linear relationship holds for this covariate as well. 

 

Figure G-2. Plot showing martingale residuals with smooths for CIP decks maximum span 
length. 
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Similarly, Figure G-3shows the plot for martingale residual for the covariate of salt (tons/lane mile) and its 

overlayed flat smoothed curve. The curve for the smoothing coefficient of 0.8 shows a little slope due to 

two data points for salt in St. Louis district. These data points were investigated for influential effects on 

parameter estimates and outliers and none of the points were identified as influential or outliers.   

 

Figure G-3. Plot showing martingale residuals with smooths for salt per mile for CIP decks. 
The martingale residual for the covariate of snow days is plotted in Figure G-4. As shown, for the smooth 

coefficient of 0.8 the curve is flat with a little bit of slope through the end. These data points were 

investigated for influential effects on parameter estimates and outliers and no data points were identified as 

such. 
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Figure G-4. Plot showing martingale residuals with smooths for snow days for CIP decks. 
Proportional Hazard Assumption 
The proportional hazard (PH) assumption is the second assumption in building the Cox regression model. 

As described in “MODEL ASSUMPTIONS” section of Appendix A, initially, it is assumed that the hazard 

is time independent, and it does not change with respect to the dependent variable TICR for CIP decks. To 

verify this assumption, the Schoenfeld residuals for individual covariate are requested and plotted against 

the covariate itself. A flat, smooth curve as shown in Figure G-5, for all smoothing coefficients, indicates 

that the PH assumption holds for the covariate age in TICR. 
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Figure G-5. Plot showing Schoenfeld residuals with smooths for age in TICR for CIP deck. 
The Schoenfeld residual plotted against the maximum span length is shown in Figure G-6. The plots for all 

four smoothing coefficients show that the PH assumption holds for covariate maximum span length for CIP 

decks. 
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Figure G-6. Plot showing Schoenfeld residuals with smooths for maximum span length for 
CIP deck. 

The Schoenfeld residual plotted against salt is shown in Figure G-7. The plots for all four smoothing 

coefficients show that the PH assumption holds for covariate salt for CIP decks. 

 

 

Figure G-7. Plot showing Schoenfeld residuals with smooths for salt for CIP deck. 
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The Schoenfeld residual for the covariate snow days is shown in Figure G-8. The fit for the plot for all four 

smoothing coefficients looks flat at zero, which indicates the PH assumption is met for the covariate of 

snow days. 

 

Figure G-8. Plot showing Schoenfeld residuals with smooths for snow days for CIP deck. 
There is an interaction between the covariate salt and snow days in the model. The Schoenfeld residual for 

the interaction term is shown in Figure G-9. As shown, the fit for the smoothed curve is flat for all four 

different smoothing coefficients which indicate that the PH assumption for interaction term holds as well. 
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Figure G-9. Plot showing Schoenfeld residuals with smooths for salt and snow interaction 
for CIP deck. 

Influential Observations and Outliers 
Investigation of the influential observations for each continuous covariate is presented here. For this 

purpose, the dfbeta measure, dfꞵ, is calculated for each covariate and then plotted against the associated 

covariate to determine whether an observation has influential effects or not. For details on influential 

observations, please see “MODEL ASSUMPTIONS” section in this report (Appendix A). As shown in 

Figure G-10, the scatter plot uses the Federal ID for a bridge to determine the bridges with influential 

observations for covariates. The vertical axis is the dfꞵ, labeled as “Difference in parameter estimate for 

age in TICR” and the horizontal axis is the associated covariate, age in TICR. The plot also shows the 

symmetry grid line at ± 0.00005. A comparison of the absolute values with the parameter estimate for age 

in TICR (+0.01293) shows that the difference is small. Specifically, as shown, inclusion of bridge ID 10023 

would decrease the parameter estimated for age in TICR by over 0.0001, which is a small amount compared 

to the parameter estimate. If observations for age in TICR for bridge ID 10023 are excluded from the model, 

the parameter would be 0.01281, or less than 1% smaller than if this observation is kept in the model. Other 

bridge IDs are either decreasing (falling below zero) or increasing (falling above zero) the parameter 

estimate by a much smaller amount compared to bridge ID 10023. Therefore, these observations are not 

influential, and no corrective action is required. 
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Figure G-10. Plot showing the influence of individual observations on age in TICR for CIP 
deck. 

The dfꞵ for the covariate maximum span length (ft.) is shown in Figure G-11. The furthest bridge ID shown 

in this graph is 2780 shows that by including this observation, the parameter estimates for maximum span 

length would decrease by an amount of about 0.00008. Comparing this quantity with the parameter estimate 

for maximum span length +0.00176, it appears to reduce the parameter estimate by 4.6%. For example, if 

a cut off percentage point of 5% is set for detection of influential observations, even in this case, this 

observation is not an influential observation. Other bridge IDs are not influential compared to this bridge. 
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Figure G-11. Plot showing the influence of individual observations on maximum span 
length for CIP deck. 

The dfꞵ for the covariate of salt (tons/lane miles) is shown in Figure G-12. Two bridge IDs that have the 

highest influence are 4950 and 3324. Including the salt data for these two bridges in the analysis would 

decrease the parameter estimate for salt by over 0.004 for each of the observations, individually. Comparing 

this quantity with the parameter estimate for salt, 0.29513, in model 3, it appears that the influence is not 

large enough and including these observations would decrease the parameter estimate by only about 2.6%, 

combined. All other observations influential effects are smaller than the bridge 4950 and 3324. 
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Figure G-12. Plot showing the influence of individual observations on salt for CIP deck. 
The plot for investigating influential observations for the covariate of snow days is shown in Figure G-13. 

As shown in Figure G-13, bridge ID 3133 has the highest influence on reducing the parameter estimate if 

included in the model. The amount of influence from this observation is close to 0.0003. Comparing this 

value with the parameter estimate for snow days, 0.01735 demonstrates that the influence is not 

pronounced, and the observation could stay in the model without adverse effect on parameter estimate for 

snow days. 
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Figure G-13. Plot showing the influence of individual observations on snow days for CIP 
deck. 

The plot of the effect of the influential observations for the interaction term of snow days and salt is shown 

in Figure G-14. The furthest bridge IDs are 9224 and 4550 with positive values at about 0.00015. 

Comparing this value with the parameter estimate for the interaction, -0.00599, indicates that including 

these two points would increase the parameter estimate by 0.00015, or by 2.6% each. Again, the change is 

not dramatic and therefore it is not an influential observation for this interaction. 
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Figure G-14. Plot showing the influence of individual observations on salt and snow 
interaction for CIP deck. 

Overall Fit for CIP Decks 
The plot to check for the overall fit of the model is shown in Figure G-15. The vertical axis is the likelihood 

displacement that “quantifies how much the likelihood of the model, which is affected by all coefficients, 

changes when the observation is left out.” [12] Again, bridge IDs are shown on the plot to find out the 

bridge which influences the Cox regression’s overall fit. But as discussed before, this observation does not 

have a dramatic influence on the specific parameter, and therefore no observations were deleted, and no 

new models were fit. 
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Figure G-15. Plot of likelihood displacement for the overall fit of the model for CIP decks. 
Predictive Accuracy of the Cox Regression for CIP Decks 

The predictive accuracy of the Cox regression for CIP decks is presented below using the Harrell’s C-

statistics. For CIP decks data set, there are 85,496,079 concordant pairs, 54,473,993 discordant pairs, and 

6,619,931 tied-in-time pairs. Using equation (A-7), the C-statistics for CIP decks is 0.61. The area under 

the ROC curve (AUC) and the 95% confidence interval for CIP decks is shown in Figure G-16. As shown, 

the predictive accuracy of the Cox regression is reaching 0.7 for TICR equal to 15 years and increasing for 

longer TICRs than 15. Typical, or common, values for C-statistics for valid model are in the range of 0.6 

to 0.8. As these data show, the C-statistic is within the typical value for statistical models and increases 

with increasing TICR. This verifies the predictive accuracy of the Cox regression models used in the 

research.   
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Figure G-16. Plot showing AUC for the time-dependent ROC curve for CIP decks. 
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Checking Model Assumptions for Superstructures 

This section contains the model assumptions for superstructures. Description of each plot is provided for 

CIP decks and is omitted here. 

Functional Form of the Covariates 

 

Figure G-17. Plot showing martingale residuals with smooths for age in TICR for 
superstructures. 
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Figure G-18. Plot showing martingale residuals with smooths for maximum span length for 
superstructures. 

 

 

Figure G-19. Plot showing martingale residuals with smooths for salt for superstructures. 
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Figure G-20. Plot showing martingale residuals with smooths for snow days for 
superstructures. 

Proportional Hazard Assumption 

 

Figure G-21. Plot showing Schoenfeld residuals with smooths for age in TICR for 
superstructures. 
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Figure G-22. Plot showing Schoenfeld residuals with smooths for maximum span length for 
superstructures. 

 

 

Figure G-23. Plot showing Schoenfeld residuals with smooths for salt for superstructures. 
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Figure G-24. Plot showing Schoenfeld residuals with smooths for snow for superstructures. 

Influential Observations and Outliers 

 

Figure G-25. Plot showing the influence of individual observations on age in TICR for 
superstructures. 
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Figure G-26. Plot showing the influence of individual observations on maximum span 
length for superstructures. 

 

 

Figure G-27. Plot showing the influence of individual observations on salt for 
superstructures. 
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Figure G-28. Plot showing the influence of individual observations on snow for 
superstructures. 

Overall Fit for Superstructures 

 

Figure G-29. Plot of likelihood displacement for the overall fit of the model for 
superstructures. 
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Predictive Accuracy of the Cox Regression for Superstructures 

The predictive accuracy of the Cox regression for superstructures is presented below using the Harrell’s C-

statistics. For superstructures data set, there are 73,135,361 concordant pairs, 53,982,296 discordant pairs, 

4 tied-in-predictor, and 5,800,699 tied-in-time pairs. Using equation (A-7), the C-statistics for 

superstructures is 0.58. The area under the ROC curve (AUC) and the 95% confidence interval for 

substructures is shown in Figure G-30. As shown, the predictive accuracy of the Cox regression for 

superstructures is about 0.6 in the beginning but reaching to 0.7 at TICR 25 to 37. 

 

Figure G-30. Plot showing AUC for the time-dependent ROC curve for superstructures. 
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Checking Model Assumptions for Substructures 

Functional Form of the Covariates 

 

Figure G-31. Plot showing martingale residuals with smooths for age in TICR for 
substructures. 

 

Figure G-32. Plot showing martingale residuals with smooths for snow days for 
substructures. 
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Figure G-33. Plot showing martingale residuals with smooths for salt for substructures. 
Proportional Hazard Assumption 

 

Figure G-34. Plot showing Schoenfeld residuals with smooths for age in TICR for 
substructures. 
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Figure G-35. Plot showing Schoenfeld residuals with smooths for snow for substructures. 

 

Figure G-36. Plot showing Schoenfeld residuals with smooths for salt for substructures. 
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Influential Observations and Outliers 

 

Figure G-37. Plot showing the influence of individual observations on age in TICR for 
substructures. 

 

Figure G-38. Plot showing the influence of individual observations on snow days for 
substructures. 
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Figure G-39. Plot showing the influence of individual observations on salt for 
substructures. 

Overall Fit for Substructures 

As shown in Figure G-40,data for structure number 5387, 5272, and 30668 fall outside of other 

substructures in the data set, and therefore these three substructures are excluded in the final model 

presented in Table C-14. 
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Figure G-40. Plot of likelihood displacement for the overall fit of the model for 
substructures. 

Predictive Accuracy of the Cox Regression for Substructures 

The predictive accuracy of the Cox regression for substructures is presented below using the Harrell’s C-

statistics. For substructures data set, there are 76,923,632 concordant pairs, 61,010,630 discordant pairs, 4 

tied-in-predictor, and 5,878,054 tied-in-time pairs. Using equation (A-7), the C-statistics for substructures 

is 0.56. The area under the ROC curve (AUC) and the 95% confidence interval for substructures is shown 

in Figure G-41. As shown, the predictive accuracy of the Cox regression is about 0.6 throughout the 

available data. 
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Figure G-41. Plot showing AUC for the time-dependent ROC curve for substructures. 
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Checking Model Assumptions for Culverts 

For reading the graphs for model validation of culverts, the description is similar to those provided for CIP 

decks.  

Functional Form 

 

Figure G-42. Plot showing martingale residuals with smooths for age in TICR for culverts. 
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Figure G-43. Plot showing martingale residuals with smooths for structure length for 
culverts. 

 

Figure G-44. Plot showing martingale residuals with smooths for snow days for culverts. 
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Figure G-45. Plot showing martingale residuals with smooths for salt for culverts. 
Proportional Hazard Assumption 

 

Figure G-46. Plot showing Schoenfeld residuals with smooths for age in TICR for culverts. 
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Figure G-47. Plot showing Schoenfeld residuals with smooths for snow for culverts. 

 

Figure G-48. Plot showing Schoenfeld residuals with smooths for salt for culverts. 
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Figure G-49. Plot showing Schoenfeld residuals with smooths for salt and snow interaction 
for culverts. 

Influential Observations and Outliers 

 

Figure G-50. Plot showing the influence of individual observations on age in TICR for 
culverts. 
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Figure G-51. Plot showing the influence of individual observations on Structure length for 
culverts. 

 

Figure G-52. Plot showing the influence of individual observations on snow days for 
culverts. 
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Figure G-53. Plot showing the influence of individual observations on salt for culverts. 

 

Figure G-54. Plot showing the influence of individual observations on salt and snow 
interaction for culverts. 
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Overall Fit for Culverts 

 

Figure G-55. Plot of likelihood displacement for the overall fit of the model for culverts. 
Predictive Accuracy of the Cox Regression for Culverts 

The predictive accuracy of the Cox regression for culverts is presented below using the Harrell’s C-

statistics. For culverts data set, there are 16,835,557 concordant pairs, 11,960,669 discordant pairs, and 

1,358,495 tied-in-time pairs. Using equation (A-7), the C-statistics for substructures is 0.58. The area under 

the ROC curve (AUC) and the 95% confidence interval for substructures is shown in Figure G-56. As 

shown, the predictive accuracy of the Cox regression for superstructures is about 0.6 throughout the 

available data for culverts. 
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Figure G-56. Plot showing AUC for the time-dependent ROC curve for culverts. 
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