MISSOURI STATE HIGETHY DEPARTMITNT

Investigation 34-3
VIBRITIVG PAN TVPE OF ITNISMING IGCFENE FOR
CONCRETE P.IVGAMMTS.

Bureau of Materials Research Division

Jefferson City, Mo. January 1936.

VIBRATING PAN TYPE FINISHING VACHINE FOR CONCRETE PAVE TNTS

Reported by F.V. Reagel and T.F. Willis

SUMMARY AND CONCLUSIONS

This report describes the methods used, and the results obtained, in an investigation of the vibrating pan type of finishing machine for concrete pavements.* The manufacturer of the machine claimed thet it would finish drier and 'leaner' mixtures than could be handled by an ordinary finisher. If this were true, concrete of improved quality could be obtained by using drier mixtures with the usual cement content, or costs could be decreased without sacrificing quality by using 'leaner' mixtures. T'he investigation proposed to determine the merit of the menufacturer' contention and the extent to which the quality of the concrete could be increased or the cost decreased.

Various concrete mixtures were tried on sections of pavement finished with the vibratory finisher. The action of the finisher was observed; slabs were removed from the pevement, tested for flexure strength and the degree of 'honeycombing' noted; also, cores were arilled from the pavement, some of which vere tested for compressive strength and others for durability by subjecting them to repeated cycles of freezing and thawing.

The data of the investigation were derived from tests of concrete on an ordinary construction project and were affected by the uncontrolled varicbles always present in such tests. For this reason the conclusions should probably be classed as indicctions. These may be summarized as follows:

1. The vibreting pan type of finisher is cepable of finishing concrete mixtures which are much lesner, harsher and drier than mixtures ordinarily considered suitable for povement concrete. However, it cannot spread and 'strike off' as dry and harsh mixtures as were handled with the vibratory screed type of machine on enother project. With proper equipment for spreading and 'striking' the concrete off to the right depth, it is possible that this finisher could pudde and compoct even harsher mixtures than were used in this investigation. as in previous investigations, it was the gen ral opinion that the vibratory finishing mechine had the capacity for puading drior and hersher concrete, but the inability of the hand labor to spread this kind of concrete prevented its trial.

[^0]2. With the materials nad methods of hending the concrete used on this project, the A-4 mixture (1:1.54:3.68) was considered the best if improvement in quality without increased cost is desired; the B-E mixture (1:2.02:4.04) was considered the best if the maximum decreese in cost mithout sacrifice of quality is desired.
3. wi.th the mixture recommended for improved quality, the strength was increased about 16% but the other measures of quality were not changed appreciably.
4. 4. With the mixture recommended for decreased cost about 15% of the cost of the cement was saved.
5. Vibratory finishing necessitates the use of concrete mixtures of lower mortar content and drier consistency than are considered satisfactory for ordinsry finishing. Met or overmortared mixtures are uneconomical as the vibration works to the surface an excessive amount of mortar vhich must be wasted over the forms at the edge of the pavement.
6. A consistency of three-fourths of an inch to one inch slump is the minimum that could be successfully used on this project. This vas especially true of the mixtures containing the larger proportions of coarse aggregate. Concrete of lover consistency could not be handled by the hand lebor and the construction equipment was unable to properly distribute the concrete and 'strike of'f' the surface in a satisfactory manner prior to vibretion; also the amount of honeycombing in the finished navement increased materially when concreto of lower consistency was used.
7. All the concrete mixtures tected h-d s-tisfectory strength, density, and durability, where pleed under optimum conditions. tith some of the mixtures, the sleb specimens from. certain locations in the ravement shoved consider ble honevcombino. The tests showed that the vibretory finishor connot overcome effects of segreg tion ccused by non-uniform spre.ding of the concrete mixture and emphasizod the to develop the full sdvntage of vibration, sone for of mechanicel spres der is necessfry.
8. In general, both the compression nd flexure test results corroboratec previous studies in showing thet vibrated concrete follows the water-cenent ratio strength law.

VIBRATING PAN TYPE FINISHING MACHINE

FOR CONCRETE PAVAMENTS

By: F. V. Reagel and
T. F. Willis

INTRODUCTI ON

Highway engineers have recently evidenced considerable interest in the use of vibration for placement and finishing of concrete pavements. In the course of the past several years the United States Bureau of Public Roads and the State Highway Departments of Illinois, Michigan, Missouri, New Jersey, Ohio, Texas and others have experimented with the use of several types of vibratory finishing machines. Much of this work was directed toward investigation of the vibratory screed type of machine. In this machine vibration units are attached to the screeds and vibration is transmitted to the concrete through these screeds as the finishing operation is carried on. Several of the investigators have found this type of machine to be effective in the placement and finishing of concrete mixtures much leaner and harsher than the ordinary finishing machine could handle. More recently another type of vibrator has been developed which is designated as the vibrating pan type. In this machine the tamping bar, which is ordinarily suspended between the front and rear screeds, is replaced by a flat pan shaped member on which the vibrating units are attached. This pan is slightly shorter than the width of the pavement and hence rests directly on the concrete at all times, vibrating it as the finishing operation progresses.

For the purpose of investigating this tyoe of finisher the Missouri State Highway Department used one on the construction of 4 miles of concrete pavement. The U. S. Bureau of Public Roads cooperated in outlining the investigation and furnished the apparatus for testing the beams which were removed from the pavement. The principle objective of the investigation was to determine the range of concrete mixtures which could be properly placed and finished.

Guided by the results of previous investigations and preliminary experiments performed on this project, two series of concrete mixtures were designed. The proportions and yield of the various mixture are shown diagrammatically in Fig. 1.

The mixtures of the first series, designated A2, A3, A4, and A.5, were proportioned so that the cement factor, i. e., the cement content per cubic yard of concrete, was constant and equal to that which had been used with the same aggregates on projects where an ordinary finishing machine was used. The ratio of the sand to the total a gregate was varied from 38 to 31 per cent and

$$
\begin{gathered}
\text { FIG. I } \\
\text { COMPARISON OF MIXTURES } \\
\text { SHOWING } \\
\text { PROPORTIONS OF MATERIALS AND YIELD }
\end{gathered}
$$

the water-cement ratio varied so as to maintain an approximately constant consistency of the concrete. The purpose of this series was to obtain information regarding the increase in strength and quality of the concrete which might result from the anticipated reduction of the water-cement ratio. Since the cement content was maintained constant, and this is the most expensive ingredient in the mixture, the cost of each mixture was approximately the same as that of the standard mixture.

The second series of mixtures desipnated B1, B2, B3, and B4 was proportioned so as to have four different cement factors varying from 1.45 to 1.30 barrels of cement per cubic yard of concrete. The purpose of this series was to determine (for the aggregates used on this job) the ability of this type of vibrator to finish mixtures with lower cement contents, than would ordinarily be used, without resulting in any objectionable decrease in strength and quality of the concrete; or in other words what dee crease in cost of materials might be effected through the use of this vibratory finisher.

Each mixture of each series was used in the construction of five sections of pavement, each section being at least 100 feet long. The test sections were alternated throughout the construction of the job so that no two of the five tests of one mixture would be conducted on the same day or at the same time on different days. This was done so that the effects of weather and temperature on the five test sections of any one mirture would on the average, be about the same as those on the test sections of any other mixture.

Tests and observations of the quality and strength of the concrete consisted of the following:

1. Observation of the surface during and after the finishing operation.
2. Observation of the pavement edges for honeycombing.
3. Removal, observation for honeycombing, and testing for flexural strength at 28 days of five $2^{\prime \prime} x 7^{\prime}$ slabs from each test section.
4. Removal, visual examination, and testing for compressive strength at 28 days of five cores from each test section.
5. Removal and testing for durability by subjectine to alternate cycles of freezing and thawing of six cores from each mixture.
6. Removal and testing for density and absorption of six cores from each mixture.

The tests were carried on during the construction of a regular paving project, FAP NRH 380A, Texas County, Plans and specifications called for a standard A.A.S.H.O. 9-7-9 crosssection, twenty feet wide. The aggregates used were local creek gravel and sand, the gravel consisting of rather angular chert and the sand a chert-quartz mixture, the particles of which were angular. The same materials had previously been used on another paving project where ordinary finishing methods were specified and were considered somewhat harsh. The mixture designated by the concrete control division for use, and considered satisfactory, on this other project was $1: 1.87: 3.23$ by dry rodded volumes, which is somewhat richer than the Missouri standard mixture of $1: 2: 3.5$

Provision for Removal of Slabs from Pavement

At some point in each test section a special test panel was provided which was seven feet long and extended one-half the width of the pavement. Wooden headers were placed at the ends of the panel and along the center joint. The subgrade was formed so that the slab would be uniformly seven inches thick and was covered with tar paper. A batch of concrete was dumped between the headers and spread by hand to a uniform depth. Then four $2^{7 \prime} \times 2^{\prime \prime}$ wooden separators were set parallel to the centerline, and at the mid-depth of the slab, to provide planes of weakness at two foot intervals across the panel. The second batch of concrete was then dumped, hand spread, and the test panel along with the rest of the pavement vibrated and finished by the usual procedure. After completion of the finishing operations the transverse headers were removed. As the concrete hardened, the wooden separators absorbed moisture, swelled, and formed longitudinal cracks which divided the panels into five slabs 2^{\prime} wide by 7^{\prime} long. These slabs were left in place and subjected to the same curing and weather conditions as the pavement until 28 days old, when they were memoved and tested. The steps in the preparatic of a test panel are pictured in Plate 2.

Operation of the
Vibratory Finisher

The operation of the finishing machine was supervised by the manufacturer's representative. At different times during the experiment the number of vibrations was varied from 3400 to 3900 per minute but most of the time the finishing was carried on at 3600 vibrations per minute. More than ordinary skill was required to coordinate the operation of the finishing screeds and vibrating pan. The surface of the concrete behind the vibrator was ordinarily too compact and rigid to be manipulated by hand screed.. ing and floating; thus, when any roughness or unevenness of the surface was left by the finishing machine considerable work was required to float it out. Frequent occurrence of high spots on these test sections proved the importance of striking the concrete off with the front screed to a uniform depth, and making the proper allowance for settlement and compaction of the concrete under the vibrator.

Heasers set 9: ¿ tar aver s ree on Stbcrade nve: aret r ry ic dumine :irst batch os ecncrete Anr test anel.

Pirst batch of concrete depnsited on subgrade.

Pirst batch spread
and senarators
set ore aratory
to dumpine second
batch o: concrete.

PLATE II.

Comparison of the action of the vibrating pan type of finishing machine with that of the vibratory screed type of machine, used on another project, brought out that the former cannot spread and 'strike off' as dry and harsh mixtures as can be handled by the latter. With proper equipment for spreading and 'striking' the concrete off to the right depth, it is possible that this finisher could puddle and compact even harsher mixtures than were used in this investigation. As in previous investigations, it was the general opinion that the vibratory finishing machine had the capacity for pudding drier and harsher concrete, but the inability of the hand labor to spread this kind of concrete prevented its trial.

During the course of these tests several mechanical imperfections in the vibratory finishing machine developed. However, changes in the design are supposed to have corrected all these faults.

Testing The slabs were removed from the test panels by means Procedure of a special hoist and tested for flexural streneth, when $2 \overline{8}$ days old, in a special testing apparatus provided by the U. S. Bureau of Public Roads. Plate 3 shows views of the testing of the slabs. As each slab was tested a sketch was made shoving the location and shape of the break and the location and amount of honeycomb in the broken section. The honeycombed area was expressed as a per cent of the total area of the cross-section at the break. This estimate of the amount of honeycomb was later checked by breaking the two halves of each slab with a sledge to expose other faces about a foot on each side of the originel flexure break.

At the time of pouring the pavement, certain locations in each test section were selected as containing concrete typical of that designed for the test section, properly distributed and finished, from which cores could be drilled. When the pavement was twenty -two days old five 6" diameter cores were drilled from each test section, shipped to the laboratory, soaked in vater for tvienty-four hours, and tested in compression (saturated) at the age of twenty eight days. When the pavement was ninety days old six $41 / 2^{\prime \prime}$ cores were drilled from representative test sections of each mixture. This set of cores was taken to the laboratory, soaked in water for twenty-four hours, and then subjected to cycles of freezing and thawing. A second set of $41 / 2^{\prime \prime}$ cores was drilled at the same time, from the same areas, and tested in the laboratory for density and absorption. All core tests vere performed according to the A. S. T. M. Standord or the latest A. S. T. M. Committee recommendetions.

Detail view
of testing apparatus.

Observations on Workability of Mixtures

Observation of the workability of the various mixtures, as judged by the ease with which the hand labor placed and spread the concrete, segregation within the batches, and the finished surface, may be summarized as follows:

The A-1 mixture (cement factor 1.55 , per cent sand 38.5), the standard mixture for these materials when finished by the ordinary methods, was used in preliminary observations only. It was found to be unsatisfactory, regardless of the consistency, because the vibrating finisher worked an excessive amount of mortar to the surface which had to be wasted over the forms.

The A-2 mixture (cement factor 1.55 , per cent sand 36.0) was very workable as compared to other mixtures used and could be easily handled and spread by the hand labor. If kept very dry and not over-vibrated, it could be finished satisfactorily. However, at ordinary consistencies (one inch slump or above), the vibrator brought an excessive amount of mortar to the surface.

The A-3 mixture (cement factor 7.56 , per cent sand $34.0)$ could be spread and puadlad readily and finished satisfactorily by the vibrator. However, unless the consistency was kept below a l' $^{\prime \prime}$ slump more mortar than necessary was brought to the surface by the vibrator.

The A-4 mixture (cement factor 1.55 , per cent sand 32.0) was considered most nearly ideal for all the conditions prevailing on this project. It conteined sufficient mortar for proper surface finishin \mathbb{E}, without having an excess. In common with all the Series A mixtures it had a relatively large cement content which produced a "rich", "fat" mortar. With such a mortar, variations in the consistency caused by variations in the amount of water were not so detrimental as they were in the case of the $B-4$ mixturc which had the same quantity of mortar. However, the A-4 mixture required care in placing to prevent excassive segrogation of the coarse aggregate. For this reason, it was considered that th; limit, to which the coarse aggregate could be incrased was reached in this mixture.

The A-5 mixture was harsh, unvorkable and, with hand spruading, the coarse asgregate segregated badly, Also, considerable difficulty vas experíenced in leveling the concrete to the rropor contour. When spread uniformly, the mixture contained sufficiont mortar for proper finishing and would probably be satisfactory if used with a mechanical spreading device.

The B-1 mixture (cement factor 1.47 , per cent sand 38.5) was readily spread by the hand labor. However, the excessive mortar content was conducive to waste.

The B-2 mixture (cement factor 1.41 , per cent sand 37.0) was sufficiently workable but a slightly wet consistency caused loss of mortar over the forms.

The B-3 mixture (cement factor 1.35 , per cent sand 35.0) was considered the most satisfactory of the lean mixtures under the conditions existing on this project. It could be handled and placed easily wi.thout excessive segregation. Like all of the B mixtures, its workability was sensitive to small changes in the quantity of water. When poured at a consistency of approximately ${ }^{\prime \prime}$ " slump, there was sufficient mortar for satisfactory finishing without waste over the forms. However, the mortar was sandy and lacked plasticity which made the surface rather difficult to Ploat*. This mixture was considered to be about as lean as could be used satisfactorily under the conditions of this job. After completion of the test sections it was approved for use on the remainder of the nro iect.
The B-4 mixture (cement factor 1.30 , per cent sand 34.0) was harsh, unworkable, difficult to spread, and tended to segregate Eadly. The vibrator brought up sufficient mortar for finishing the surface, excent in areas where the coarse aggregate was concentrated. However, the mortar was of poor quality. This mixture might have been satisfactory with better control of the quantity of mixing water and if spread with a mechanical spreader, but it was not nractical under the conditions on this project.

A consistency of three-fourths of an inch to one inch slump is the minimum that could be successfully used on this project. This was especially true of the mixtures containing the larger proportions of coarse aggregate. Concrete of lover consistency could not be handled by the hand labor and the construction equipment was unable to properly distribute the concrete and "strike off" the surface in a satisfactory manner prior to vibration; also the amount of honeycombing in the finished pavement increased materially when concrete of lower consistency was used.

TEST DATA AND DISCUSSION

Unfortunately equipment was not available on this project for placing test sections of the standard mixture and
finishing by the ordinery methoas, hence no direct cuantitative cumparison of the vibrating pan and ordinary finishers can be made. However, study of other projects where the same materials were used shows that 575 lbs . per so. in. and 4050 lbs . per sa. in. flexural and compressive strength respectively, are fair average strengths for the standard mixture finished by ordinary methods. In the discussion folloving, any statements bearing on the advantages of one method of finishing over another, or of the relative strengths of the m xtures used in this investigation and the standard mixtures, are based on observations on other projects and the above averages.

For the convenience of anyone interested the detailed data from the tests of individual specimens are presented in Tables I and II. Inspection will shov: the great variation both in the conditions under wich the tests vere made and in the results obtained, caused by the uncontrolled variables always present in a field experiment oi this nature. ror this reason the data are averaged and summarized in Tuble III and the discussion following is based principally on these averages.

A number of the relationships between some of the variables are shown graphically. In some instances, the selection of the variables plotted is somerhat arbitrary and the curve has no quantitetive significance, merely indicoting the trend of the data of this exneriment.

Results of Tests of Slabs Removed from Pavement

The results of the flexural tests on the $2^{\prime} x$ ' 7^{\prime} beams taken from the prvement are appicted धraphically in Fucures 2 to 4. In Figure 2 the modulus of rupture is plotted against the cement factor of the mixture. The graph shows that as the cement factor was reduced from 1.56 (which was used in all the Series A mixtures) to 1.30 the modulus of rupture decreased from 677 to 544 lbs . per sq. in. The reduction in cement amounted to 17% and the loss in flexural strength 18%. The decrease in modulus of rupture was not the same for each increment in reduction of cement, which was, due to the influence of other factors such as water-cement ratio, amount of honeycombing, etc.

Figure 3 shows the relation between the flexural strength and the water-cement ratio of the concrete. The curve shows a characteristic trend; namely, a decrease in strength with an increase in water-cement ratio. Even under the unusual conditions of this experiment, i.e., the use of a veriety of mixtures ordinerily classed as unworkable and vibratory finishing, it is obvious that the vater-cement ratio vas a major determinant of the flexural strength of the concrete.

TABLE II

					TEST8 OF MOLDTD BENS mODULES OF RUPTURE	tests of pavtegnt cores (6 inches dung ter)								
SLGEP	$\begin{aligned} & \text { VATMR } \\ & \text { GMGORT } \\ & \text { RATIO } \end{aligned}$	RATING KUEER	$\begin{gathered} \text { HONSY- } \\ \text { cons } \end{gathered}$	MODULOB 07 RUPTURE		station	DISTANGE FROM CENTSRLINE	SLIMP	$\begin{aligned} & \text { VITER } \\ & \text { CBE KNT } \\ & \text { RATIO } \end{aligned}$	VISUAL RATING NURBER	$\begin{aligned} & \text { VOID } \\ & \text { SPACE } \\ & \text { FER CENT } \end{aligned}$	$\begin{aligned} & \text { ABSORPTION } \\ & \text { PER } \\ & \text { CENT } \end{aligned}$	COMPR	$\begin{aligned} & \text { ESSIVE } \\ & \text { ENGTH } \end{aligned}$
$11 / 8{ }^{\circ}$.718	$\underset{\text { Treted }}{\substack{\text { ret }}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 508 \\ & 693 \\ & 653 \\ & 686 \\ & 654 \text { (} 627) \end{aligned}$	$\begin{array}{rr} 1010 & 1070 \\ 850 & 930 \\ 950 & 1070 \\ \hline \end{array}$	$284+65$ $284+85$ $284+95$ $286+10$ $285+30$	$\begin{aligned} & \mathrm{L}-\mathbf{z}^{\prime} \\ & \mathrm{R}-4, \\ & \mathrm{R}-7 \\ & \mathrm{R}-2, \\ & \mathrm{~L}-7, \end{aligned}$	$\begin{array}{ll} 1 & 3 / 8^{\circ} \\ 1 & 3 / 8^{\circ \prime} \\ 1 & 1 / 8^{\circ \prime} \\ & 5 / 8^{\circ \prime} \end{array}$	$\begin{aligned} & .739 \\ & .739 \\ & .718 \\ & .718 \\ & .718 \quad(.786) \end{aligned}$	$\begin{array}{lll} 2 & & \\ 3 & & \\ 3 & & \\ 1 & 2 / 3 \\ 2 & 2 / 3 & (2.50) \end{array}$			$\begin{aligned} & 3885 \\ & 3081 \\ & 4660 \\ & 4792 \\ & 3933 \end{aligned}$	(4070)
$13 / 4 *$. 737	$\begin{array}{ll} \hline 2 \% & \\ \text { z } & \\ 2 & \\ 2 \text { 2k } & \\ 3 & (2.40) \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{array}{rr} 1080 & 990 \\ 1020 & 1020 \\ 1070 & 1070 \\ \hline \text { TE. } & 1088 \end{array}$	$\begin{aligned} & 297+75 \\ & 297+75 \\ & 298+01 \\ & 298+20 \\ & 298+20 \end{aligned}$	$\begin{aligned} & \mathrm{L}-7, \\ & \mathrm{R}-2, \\ & \mathrm{~B}-7 \\ & \mathrm{R}-4, \\ & \mathrm{~L}-2, \end{aligned}$	$5 / 8^{\prime \prime}$ $5 / 8^{\prime \prime}$ 1 $3 / 4 "$ 1 $1 / 2^{\prime \prime}$ 1 $1 / 2^{\prime \prime}$.737 .737 .737 .737 .737 $(.737)$	$\begin{array}{\|lll\|} \hline 2 & & \\ 2 & 1 / 3 & \\ 2 & & \\ 2 & & \\ z & & (2.07) \\ \hline \end{array}$	10.7	5.4	$\begin{aligned} & 4395 \\ & 4995 \\ & 5825 \\ & 5585 \\ & 5040 \end{aligned}$	5165)
$13 / 4{ }^{-1}$. 758		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 398 \\ & 662 \\ & 659 \\ & 678 \\ & 636(603) \\ & \hline \end{aligned}$	$\begin{array}{rr} 825 & 915 \\ 1090 & 840 \\ 1070 & 1070 \\ \hline \mathbf{A V E} & 987 \\ \hline \end{array}$	$\begin{aligned} & 304+70 \\ & 305+22 \\ & 305+75 \\ & 306+00 \\ & 306+20 \end{aligned}$	$\begin{aligned} & \mathrm{R}-2, \\ & \mathrm{R}-7 \\ & \mathrm{~L}-7 \\ & \mathrm{R}-\mathbf{4}^{\prime} \\ & \mathrm{L}-\mathbf{2}^{\prime} \end{aligned}$	$\left\lvert\, \begin{array}{ll} & 7 / 8^{\circ} \\ 1 & 3 / 44^{\circ} \\ 1 & 3 / 4^{\circ} \\ 1 & 0^{\circ} \end{array}\right.$.768 .758 .768 .768 $.768 \quad(.766)$	$\begin{array}{lll} \hline 2 & 2 / 3 & \\ 2 & 1 / 3 & \\ 2 & & \\ 2 & 2 / 3 & \\ 2 & & \text { (2.33) } \end{array}$	13.1	6.6 6.2	$\begin{aligned} & 4615 \\ & 3630 \\ & 4120 \\ & 3715 \\ & 3420 \end{aligned}$	(3914)
$13 / 8{ }^{-1}$.754	Speoiz	$\begin{aligned} & 0 \\ & \text { a broke } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{lll} 650 & \\ & \\ 650 \\ & \\ 654 & \\ 604 & (836) \end{array}$	$\begin{array}{rr} 835 & 815 \\ 786 & 795 \\ \hline 865 & 865 \\ \hline \mathbf{A E F} & 827 \end{array}$	$\begin{aligned} & 351+65 \\ & 351+90 \\ & 332+09 \\ & 332+25 \\ & \mathbf{3 3 2}+40 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2^{\prime} \\ & \mathrm{L}-\mathbf{4}^{\prime} \\ & \mathrm{R}-7 \\ & \mathrm{~L}-2, \\ & \mathrm{~L}-\mathbf{6}^{\prime} \end{aligned}$	$\begin{aligned} & 1 \quad 1 / 8^{\prime \prime} \\ & 1=0 \\ & 1 " \\ & 1 " \\ & 1 " \end{aligned}$	$\begin{aligned} & .754 \\ & .754 \\ & .754 \\ & .754 \\ & .754 \quad(.754) \\ & \hline \end{aligned}$	2 $1 / 3$ z z z z (2.07)	11.9	4.1	$\begin{aligned} & 4870 \\ & 4125 \\ & 4360 \\ & 3400 \\ & 4590 \end{aligned}$	(6269)
11/4**	. 624	$\begin{array}{ll} \begin{array}{l} 3 \\ z \\ z \\ 2 \end{array} & \\ \text { z } \\ 8 & \\ 8 & (2.40) \\ \hline & 2.42 \end{array}$	$\begin{aligned} & \mathbf{8 . 8} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0.1 \end{aligned}$		1080 990 940 920 855 1050 $\mathbf{A E s}$ 985 956	$\begin{aligned} & 497+10 \\ & 496+95 \\ & 496+63 \\ & 496+57 \\ & 496+45 \end{aligned}$	$\begin{aligned} & \mathrm{L}-6{ }^{\prime} \\ & \mathrm{R}-\mathrm{S}^{\prime} \\ & \mathrm{L}-4^{\prime} \\ & \mathrm{L}-\mathbf{\prime}^{\prime}-2 \end{aligned}$	$\frac{l^{\prime \prime}}{1^{\prime \prime} 1 / 4^{\prime \prime}}$.624 .624 .602 .602 $.602 \quad(.011)$	$\begin{array}{lll} \begin{array}{lll} 2 & 1 / 3 & \\ 2 & & \\ 2 & 1 / 3 & \\ 2 & 1 / 3 & \\ 2 & & (2.20) \\ \hline & & 2.23 \end{array} \end{array}$	$\begin{aligned} & 12.3 \\ & 12.3 \\ & \hline 12.0 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 4.7 \\ & \hline 5.2 \end{aligned}$	$\begin{aligned} & 4145 \\ & 4544 \\ & 3884 \\ & 4213 \\ & 4877 \\ & \hline \end{aligned}$	$\frac{(4293)}{4342}$
3/4*	. 689	$\begin{gathered} \text { Kot } \\ \text { rated } \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 8.0 \end{aligned}$	 590 616 700 626 755 	$\begin{array}{rr} 890 & 890 \\ 885 & 885 \\ 845 & 950 \\ \hline \end{array}$	$\begin{aligned} & 282+50 \\ & 282+70 \\ & 283+60 \\ & 283+90 \\ & 284+20 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2, \\ & \mathrm{R}-2, \\ & \mathrm{~L}-\mathbf{2}^{\prime} \\ & \mathrm{R}-7 \\ & \mathrm{~L}-7 \end{aligned}$	$\begin{array}{\|c} 11 / 8^{\prime \prime} \\ \\ 3 / 4^{\prime \prime} \\ 3 / 8^{\prime \prime} \end{array}$		$\begin{array}{lll} 2 & & \\ 2 & 1 / 3 & \\ 2 & 2 / 3 & \\ 2 & & \\ 2 & (2.20) \end{array}$			$\begin{aligned} & 3629 \\ & 3544 \\ & 4389 \\ & 4534 \\ & 4670 \end{aligned}$	(4153)
$1{ }^{\prime \prime}$. 718		$\begin{gathered} 10.1 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$		$\begin{array}{rr} 850 & 950 \\ 850 & 906 \\ 845 & 985 \\ \hline \end{array}$	$\begin{aligned} & 293+00 \\ & 293+20 \\ & 293+41 \\ & 293+50 \\ & 293+70 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2, \\ & \mathrm{~L}-\mathbf{z}^{\prime} \\ & \mathrm{R}-7, \\ & \mathrm{~L}-7, \\ & \mathrm{~B}-\mathbf{S}^{\prime} \end{aligned}$	$\begin{array}{ll} 1 & 1 / 44^{\circ} \\ 1 & 1 / 4^{\prime \prime} \\ 1 & 1 / 2^{\circ \prime} \end{array}$	$\begin{aligned} & .731 \\ & .731 \\ & .718 \\ & .744 \\ & .768(.737) \\ & \hline \end{aligned}$	$\begin{array}{\|ll\|} \hline 2 & \\ 2 & \\ 2 & \\ 2 & (2.00) \\ 2 & \end{array}$	12.1	6.2	$\begin{aligned} & 4655 \\ & 5026 \\ & 4592 \\ & 4575 \\ & 4585 \end{aligned}$	(4687)
5/8*	. 827		$\begin{gathered} 7.0 \\ 19.3 \\ 0 \\ 0 \\ 4.1 \end{gathered}$		$\begin{array}{cr} 1070 & 1070 \\ 1070 & 1070 \\ 990 & 1070 \\ \hline \mathbf{A V E} & 1067 \end{array}$	$\begin{aligned} & 314+55 \\ & 314+60 \\ & 314+80 \\ & 315+00 \\ & 315+20 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L}-\mathbf{2}^{\prime} \\ & \mathrm{L}-\mathbf{N}^{\prime} \\ & \mathrm{R}-6, \\ & \mathrm{~L}-6, \end{aligned}$	$\begin{array}{\|r\|} \hline 13 / 4^{\prime \prime} \\ 5 / 8^{\prime \prime} \\ 3 / 4^{\circ} \\ 3 / 4^{\circ} \\ \hline \end{array}$.806 .806 .827 .887 .827 $(.819)$	$\begin{array}{ll} 3 & \\ 2 & \\ 2 & \\ 2 & \\ 4 & (2.60) \end{array}$	${ }_{12.8}^{11.7}$	4.4	$\begin{aligned} & 4195 \\ & 4495 \\ & 4655 \\ & 4405 \\ & 2900 \end{aligned}$	(4150)
7/8*	. 795	$\begin{array}{ll} 2 & \\ 2 \% \\ 2 \\ 2 & \\ \text { z } \\ \text { z } \end{array}(2.30)$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	368 605 710 656 594 (583)	$\begin{array}{rr} 905 & 955 \\ 935 & 935 \\ 847 & 847 \\ \hline \mathbf{8 F E} \cdot \mathbf{9 0 4} \\ \hline \end{array}$	$\begin{aligned} & 320+15 \\ & 380+50 \\ & 320+65 \\ & 380+65 \\ & \mathbf{3 2 1 + 2 4} \end{aligned}$	$\begin{aligned} & \mathrm{L}-2, \\ & \mathrm{~L}-4, \\ & \mathrm{~L}-\mathrm{o}^{\prime}, \\ & \mathrm{R}-\mathrm{E}^{\prime}, \\ & \mathrm{R}-\mathrm{O}^{\prime} \end{aligned}$	$\begin{aligned} & 3 / 4^{\circ} \\ & 3 / 4^{\circ} \\ & 7 / 8^{\circ} \end{aligned}$.782 .795 .795 .795 .795 $(.788)$	$\begin{array}{ll} 2 & \\ 3 & \\ 3 & \\ 2 & \\ 2 & (2.40) \\ \hline \end{array}$	11.3	4.2	$\begin{aligned} & 4695 \\ & 3810 \\ & 3505 \\ & 3570 \\ & 4265 \end{aligned}$	(3989)
$\frac{10}{7 / 8^{*}}$.785		$\begin{aligned} & 1.1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 1.9 \end{aligned}$	$\begin{aligned} & 500 \\ & 618 \\ & 612 \\ & 658 \\ & \frac{571}{} \quad(589) \\ & \hline \end{aligned}$	765 835 880 795 815 860 $\mathbf{A V E}$ 815 915	$\begin{aligned} & 14+23 \\ & 14+39 \\ & 14+50 \\ & 14+60 \\ & 14+60 \end{aligned}$	$\begin{aligned} & \mathrm{L}-4^{\prime} \\ & \mathrm{R}-\mathbf{6}^{\prime} \\ & \mathrm{L}-2^{\prime} \\ & \mathrm{R}-2, \end{aligned}$.723 .723 .723 .723 $.723 \quad(.723)$.788	$\begin{array}{lll} \begin{array}{ll} 2 & \\ & \\ 2 & \\ 1 & 2 / 3 \\ & \\ 2 & 2 / 3 \\ 2 & \\ \frac{2}{} & \\ \hline & \\ 2.07) \\ 2.25 \end{array} \end{array}$	$\begin{aligned} & 12.8 \\ & 12.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.3 \\ & 6.3 \\ & \hline 5.3 \end{aligned}$	$\begin{aligned} & 4920 \\ & 3825 \\ & 4600 \\ & 4380 \\ & 3950 \\ & \hline \end{aligned}$	$\frac{(4331)}{4254}$
7/8*	. 904	$\underset{\text { rated }}{\text { Mot }}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 589 \\ & 565 \\ & 471 \\ & 591 \\ & 642 \\ & \\ & \hline \end{aligned}$	$\begin{array}{rr} 970 & 930 \\ 1070 & 1070 \\ 955 & 935 \\ \hline \mathbf{V E 5} . & 988 \end{array}$	$281+00$ $881+00$ $281+35$ $281+50$ $281+50$	$\begin{aligned} & \mathrm{R}-\mathbf{2 '}^{\prime}, \\ & \mathrm{L}-\mathrm{P}^{\prime} \\ & \mathrm{R}-7, \\ & \mathrm{R}-\mathbf{A}^{\prime}, \end{aligned}$	$\left\lvert\, \begin{array}{ll} 1 & 1 / 4^{\prime \prime} \\ 1 / 4 " \end{array}\right.$	$\begin{aligned} & .904 \\ & .904 \\ & .904 \\ & .892 \\ & .898 \quad(.899) \end{aligned}$	$\begin{array}{lll} \mathbf{z} & & \\ 2 & 1 / 3 & \\ 2 & & \\ z & & \\ z & & (2.07) \end{array}$			$\begin{aligned} & 2855 \\ & 4757 \\ & 3865 \\ & 5002 \\ & 4056 \end{aligned}$	(4109)
$11 / 4^{*}$. 811	$\begin{aligned} & \text { 4. } \\ & \text { sit } \\ & \text { है } \\ & \text { tit (3.10) } \end{aligned}$	$\begin{gathered} 33.7 \\ 11.8 \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$	1812 508 672 657 613 	$\begin{array}{rr} 950 & 1010 \\ 1070 & 1070 \\ 1070 & 1070 \\ \hline \mathbf{A} 8 . & 105 \% \\ \hline \end{array}$	$\begin{aligned} & 296+80 \\ & 296+50 \\ & 296+81 \\ & 297+00 \\ & 297+15 \end{aligned}$	$\begin{aligned} & R-2 \prime \\ & R-4 \prime \\ & R-7 \prime \\ & L-2^{\prime} \\ & L-9^{\prime} \end{aligned}$	1 1/2*	$\begin{array}{\|l\|} \hline .830 \\ .830 \\ .830 \\ .811 \\ .811 \\ \hline \end{array}$	$\begin{array}{ll} 3 & \\ 2 & \\ 3 & \\ 2 & \\ 2 & (2.40) \\ \hline \end{array}$	11.3	5.6	$\begin{aligned} & 4305 \\ & 4145 \\ & 3895 \\ & 4655 \\ & 4510 \end{aligned}$	(4302)
5/8*	. 737	$\begin{array}{lc} 4 & \\ 3 & \text { Speois } \\ 4 & (3.50) \\ \hline \end{array}$	32.5 22.3 $8 r 0) \mathrm{ks}$ 12.5 20.1	$\begin{aligned} & 471 \\ & 489 \\ & 486 \\ & 457 \\ & \hline \end{aligned}$	$\begin{array}{rr} 1010 & 1030 \\ 1070 & 1070 \\ 985 & 980 \\ \hline \mathbf{v 8 .} 1011 \end{array}$	$\begin{aligned} & 310+60 \\ & 311+04 \\ & 311+22 \\ & 311+65 \\ & 311+60 \end{aligned}$	$\begin{aligned} & \text { R-2' } \\ & \mathrm{L}-8, \\ & \mathrm{R}-6, \\ & \mathrm{R}-4, \\ & \mathrm{~L}-6, \end{aligned}$		$\begin{aligned} & .735 \\ & .735 \\ & .735 \\ & .735 \\ & .757 \quad(.739) \end{aligned}$	$\begin{array}{lll} 2 & 2 / 3 & \\ 2 & \\ 2 & & \\ 2 & & \\ 2 & \text { (2.13) } \end{array}$	111.3	5.0	$\begin{aligned} & 3405 \\ & 4585 \\ & 3900 \\ & 3945 \\ & 3930 \end{aligned}$	(3949)
3/8*	. 767		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 386+50 \\ & 326+60 \\ & 326+78 \\ & 327+15 \\ & 387+40 \end{aligned}$	$\begin{aligned} & L-6^{\prime} \\ & R-4, \\ & R-4, \\ & R-2, \\ & R-2, \end{aligned}$	$\begin{array}{\|l\|l\|} 13 / 8 " \\ 3 / 8 " \end{array}$.787 .787 .787 .7580 .780 $(.764)$	$\begin{array}{lll} 2 & 1 / 3 & \\ 2 & & \\ 2 & 2 / 3 & \\ 2 & 2 / 3 & \\ 3 & & (2.50) \end{array}$	11.7	5.0	$\begin{aligned} & 4600 \\ & 4110 \\ & 4805 \\ & 4445 \\ & 4850 \end{aligned}$	(4442)
$\frac{11 / 8^{\circ}}{7 / 8^{\circ}}$.748	$\begin{aligned} & \begin{array}{l} 2 \\ z \\ z \\ 2 \\ 2 \end{array} \\ & \text { zt } \\ & \frac{2.73}{2}+(2,30) \\ & \hline 2.73 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \mathbf{5 . 5} \end{aligned}$	$\begin{array}{ll} \hline 510 \\ 579 \\ 600 \\ 591 & \\ & \\ \frac{508}{} \quad(575) \\ \hline & 555 \end{array}$	795 885 870 840 880 890 $\Delta \sqrt{8}$ 850 956	$\begin{aligned} & 12+05 \\ & 12+80 \\ & 12+67 \\ & 12+60 \\ & 13+00 \end{aligned}$	$\begin{aligned} & \mathrm{L}-\mathbf{4}^{\prime}, \\ & \mathrm{L}-6, \\ & \mathrm{R}-\mathrm{S}^{\prime}, \\ & \mathrm{R}-\mathbf{2}^{\prime}, \\ & \mathrm{L} \end{aligned}$	$\left\lvert\, \begin{array}{ll} 1 & 1 / 2^{*} \\ 1 & 1 / z^{*} \\ 1 & 1 / 4^{* \prime} \\ \hline 1 & 1 / 8^{* \prime} \end{array}\right.$.748 .742 .742 .742 $.718 \quad(.737)$	$\begin{array}{llll} \begin{array}{l} 2 \\ 2 \\ 2 \end{array} & \\ 2 & & \\ 2 & 2 / 3 \\ 2 & 2 / 3 & (2.25) \\ \hline & & 2.27 \end{array}$	$\begin{aligned} & 13.2 \\ & 12.4 \\ & \hline 11.9 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 6.0 \\ & \hline 5.4 \end{aligned}$	$\begin{aligned} & 3750 \\ & 3670 \\ & 4360 \\ & 3325 \\ & 3595 \\ & \hline \end{aligned}$	$\frac{(3740)}{4108}$
10	.730	Mot reted 8peois st (2.75)	 0 0 orols 0 0.7 10.	$\begin{aligned} & 650 \\ & 572 \\ & \\ & \\ & \\ & \\ & 507 \\ & 555 \\ & \hline \end{aligned}$	$\begin{array}{rr} 980 & 944 \\ 910 & 1000 \\ 1040 & 870 \\ \hline \mathbf{A V E} \\ \hline \end{array}$	$\begin{aligned} & 286+00 \\ & 286+17 \\ & 286+25 \\ & 286+50 \\ & 206+65 \end{aligned}$	$\begin{aligned} & \mathrm{R}-\mathrm{R}^{\prime}, \\ & \mathrm{R}-7, \\ & \mathrm{~L}-7, \\ & \mathrm{~L}-\mathbf{4}^{\prime} \\ & \mathrm{L}-\mathbf{2}^{\prime} \end{aligned}$	$\begin{aligned} & 1 " \prime \\ & 1 " \end{aligned}$ $11 / 4^{\circ}$ $11 / 4 *$	$\begin{aligned} & .739 \\ & .739 \\ & .751 \\ & .751 \\ & .751 \quad(.747) \\ & \hline \end{aligned}$	```lll}\begin{array}{lll}{2}&{2/3}&{}\\{2}&{2/3}&{}\\{2}&{}\\{2}&{}\\{2}&{}&{}\\{2}&{(2.25)}```			$\begin{aligned} & 5016 \\ & 4055 \\ & 4049 \\ & 4265 \\ & 3804 \end{aligned}$	(4234)
3/4"	. 912	$\begin{array}{ll} \hline 3 & \\ 3 & \\ 3 & \\ 3 & \\ 4 & (3.20) \\ \hline \end{array}$	$\begin{gathered} 10.2 \\ 1.1 \\ 0 \\ 2.6 \\ 16.8 \end{gathered}$		$\begin{array}{rr} 900 & 940 \\ 1070 & 1070 \\ 1090 & 1090 \\ \text { Ivg. } & 102 \end{array}$	$\begin{aligned} & 299+67 \\ & 299+89 \\ & 500+00 \\ & 500+69 \\ & 500+90 \end{aligned}$		$3 / 4^{\circ}$ $3 / 4^{\prime \prime}$ $3 / 4^{\prime \prime}$ 1 $3 / 4^{\prime \prime}$	$\begin{aligned} & .918 \\ & .918 \\ & .912 \\ & .912 \\ & .912 \quad(.912) \end{aligned}$	$\begin{array}{lll} \hline 3 & & \\ 2 & & \\ 2 & 1 / 3 & \\ 3 & & \\ 2 & & (2.50) \\ \hline \end{array}$	10.9	5.1	$\begin{aligned} & 3965 \\ & 3125 \\ & 4550 \\ & 3340 \\ & 4200 \end{aligned}$	(3836)
3/4*	. 875	$\begin{array}{ll} 4 & \\ 3 & \\ 3 & \\ 4 & (3.60) \\ \hline \end{array}$	$\begin{aligned} & 24.3 \\ & 9.7 \\ & 0 \\ & 0 \\ & 17.4 \end{aligned}$	Se 808 515 569 488 (804)	$\begin{array}{rr} 900 & 1070 \\ 1080 & 1000 \\ 900 & 930 \\ \hline \end{array}$	$\begin{aligned} & 316+80 \\ & 316+80 \\ & 316+79 \\ & 316+99 \\ & 319+10 \end{aligned}$	$\begin{aligned} & \mathrm{L}-\mathbf{2}^{\prime} \\ & \mathrm{R}-2, \\ & \mathrm{R}-6, \\ & \mathrm{R}-4, \\ & \mathrm{~L}-\mathbf{S}^{\prime}, \end{aligned}$	$\left\lvert\, \begin{array}{rl} 1 & 7 / 8^{\circ} \\ 3 / 40 \end{array}\right.$.853 .851 .851 .875 .875 (.877)	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned} 1 / 3 \quad(2.07)$	12.4	4.7	$\begin{aligned} & 3480 \\ & 3500 \\ & 4225 \\ & 4965 \\ & 4500 \end{aligned}$	(4134)
3/8*	. 788	$\begin{aligned} & \text { 21 } \\ & 3 \\ & 3 \\ & \text { 古 } \\ & \text { 各 }(2.79) \end{aligned}$	$\begin{gathered} 0 \\ 18.6 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 581 \\ & \hline 476 \\ & 687 \\ & 570 \\ & \\ & \hline 848 \\ & \text { (882) } \\ & \hline \end{aligned}$	910 000 865 885 849. 855 AVE. 873	$\begin{aligned} & \mathbf{3 2 1 + 6 0} \\ & 321+95 \\ & 325+08 \\ & 328+86 \\ & 328+75 \end{aligned}$	$\begin{aligned} & \hline \mathrm{B}-\mathbf{4}^{\prime} \\ & \mathrm{L}-\mathbf{2}^{\prime} \\ & \mathrm{R}-\mathbf{8}^{\prime} \\ & \mathrm{L}-\mathbf{6}^{\prime}, \\ & \mathrm{R}-\mathbf{2}^{\prime} \\ & \hline \end{aligned}$	3/8*	.800 .785 .785 .8000 .825 $(.799)$	```3 2/3 2/3 (2.50)```	11.2	4.7	$\begin{aligned} & 4685 \\ & 3990 \\ & 4605 \\ & 5030 \\ & 4535 \end{aligned}$	(4569)
9/8*	$\frac{.726}{.008}$		$\begin{aligned} & \mathbf{4 2 . 8} 8 \\ & 0 \\ & 0 \\ & 4.0 \\ & 0 \\ & \hline 6.8 \end{aligned}$	553 584 509 608 $\frac{858}{} \quad(806)$ 854	700 886 800 900 980 905 7.8 .85 854	$\begin{aligned} & 508+40 \\ & 505+80 \\ & 504+88 \\ & 504+75 \\ & 504+50 \end{aligned}$	$\begin{aligned} & \mathrm{L}-\mathbf{E}^{\prime} \\ & \mathrm{L}-\mathbf{c}^{\prime} \\ & \mathrm{L}-\mathbf{6}^{\prime}, \\ & \mathrm{R}-\mathbf{S}^{\prime} \end{aligned}$	$\frac{\begin{array}{c} 9 / 8^{*} \\ 7 / 8^{\circ} \end{array}}{7 / 8^{* *}}$	$\begin{aligned} & .716 \\ & .716 \\ & .716 \\ & .786 \\ & .726 \quad(.780) \\ & .811 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 2 \\ 2 \\ 2 \\ 2 \end{array} \\ & 2 \\ & 2 \\ & 2 / 3 \\ & 21 / 3 \quad(2.28) \\ & \frac{2.31}{} \end{aligned}$	$\begin{aligned} & 12.4 \\ & 12.8 \\ & \hline 11.9 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 5.2 \\ & \hline 4.8 \end{aligned}$	$\begin{aligned} & 3776 \\ & 4385 \\ & 4885 \\ & 3960 \\ & 3874 \\ & \hline \end{aligned}$	$\frac{(4056)}{4166}$

TABLE III - COMPARISON OF MIXMURES

FIG. 2
RELATION BETWEEN FLEXURAL STRENGTH OF SLABS AND CEMENT FACTOR OF CONCRETE

					$L E G E N D$
$A-2-1: 176: 3.37$	0	$B-1-1: 2.02: 3.48$	\square		
$A-3-1: 167: 3.50$	0	$B-2-1: 2.03: 3.74$	\square		
$A-4-1: 158: 3.62$	0	$B-3-1: 2.02: 4.04$	Δ		
$A-5-1: 53: 3.68$	\oplus	$B-4-1: 2.05: 4.32$	\boxplus		

Each plotted point represents the average of 25 tests (5 slabs from each of 5 test sections).

FIG． 3

RELATION OF FLEXURAL STRENGTH OF SLABS FROM PAVEMENT TO WATER CEMENT RATIO OF CONCRETE
$\angle E G E N D$

$A-2-1 \% 76: 3.37$	0	$B-1-1: 202: 3.48$	\square
$A-3-1: 67: 3.60$	0	$B-2 \cdot 1: 2.03: 3.74$	\square
$A-4-1 \% 58: 3.62$	\otimes	$B-3-1: 2.02: 4.04$	\square
$A-5-1: 1.53: 3.68$	\oplus	$B-4-1: 2.05: 4.32$	$⿴ 囗 十$

Each plotted point represents the average of 25 tests （one from each slab）．

Regardless of the mixture used, it was noted that strength of a slab was influenced by its location in the test panel. This is shown in Figure 4 where the average strength of the slabs from all the mixtures, at the same location in the pavement is plotted for each series. The figure shows definitely that the \#l slab, which lay adjacent to the centerline of the pavement, and the \#5 test slab which lay along the outer edge of the pavement were weaker than the numbers 2,3 and 4 slabs, which came from the central portion of the test panels. Observation durino the pouring of the concrete lead the observers to believe that this was caused by poor distribution of the concrete prior to screeding and vibrating. Figure 4 also shows the amount of honeycombing, along the cross-section at the flexure break in the specimens, with respect to their location in the ravement. The greatest amount of honeycombing was found in slab numbers 1 and 5 located resrectively on the inside and outside edges of the test nanels; no honeycombing was found in any of the \#3 specimens. It is annarent from the diagram that the flexural strength of the snecimens was influenced by the amount of honeycombing.

The use of the wooden separators in the test ranels for forming the slabs introduced possible obstacles th the snreading and compaction of the concrete which would not be present in the remainder of the pavement. Perhaps if the slabs had been removed from portions of pavement where no separators were used the degree of honeycombing would have been less. Ho ever, the slabs of the more workable mixtures had little or no honeycombing, and the honeycombed slabs of the least workable mixtures were generally honeycombed the full widh of the cross-section, rather than just at the edges near the separators. This indicates that the separators were not the major factors in causing honeycomb and that specimens taken from areas in the various sections, outside the test panels, would have had the same relative amount of honeycomb. The results indicate that the least workable mixtures approached the limit of harshness that can be handled by this vibratory finisher.

The relation betreen the per cent honeycombing and the per cent excess mortar in the mixture (i. θ, the amount of mortar in excess of that necessary to fill the voids in the coarse aggregate, expressed as a per cent of the void space in the coarse aggregate) is shown in Figure 5. For both Series A and Series B mixtures the per cent honeycombing varied inversely with the per cent excess mortar. For any iven ner cent excess mortar the Series A mixtures showed less honeycombing than those of Series B. This can be explained by the fact that the Series A mixtures contained a more workable mortar, due to their relatively higher cement contents, than the Series B mixtures.

RELATION BETWEEN PERCENT HONEYCOMB IN BROKEN SECTION OF SLABS AND PERCENT EXCESS MORTARIN CONCRETE

Each plotted point represents the average of 25 tests (5 slabs from each of 5 test sections).

Compressive Strength of Cores

Unlike the slab specimens removed from the pavement, the cores were drilled from points at a fixed distance from the center- line of the pavement in order that they be representative of the same conditions of spreading and intensity of vibration in all test sections. This distance was selected so as to avoid longitudinal junctions between batches where honeycombing is most apt to occur. Naturally, this procedure caused the average quality of the concrete to appear better when measured by the core test results than when measured by the slab tests. The core tests may be considered to show the relationshin between the different mixtures when placed under optimum conditions.

Reference to the averame core strengths in Table III shows that the difference betveen the individual mixtures of either series was small. All the mixtures of Series A pave higher strength than any of those of Series B, and on the average about 750 lbs. per. sq. in. higher than would have been expected of the standard mixtures finished by ordinary methods. The Series B mixtures were, on the average, about 200 lbs . ner sq. in. stronger than the standerd mixtures.

The relative compressive strencths of the various mixtures is shown in Fig. 6 where the average core strencth for each mixture has been plotted against its cement factor. This figure shows the same relation for the core strength as is shown for the flexural strength of the slabs by Fig. 2, and the same remarks apply in general. Reduction of the cement factor from 1.56 to 1. 20 was accompanied by a decrease in comnressive streneth of approximately 700 lbs . per sq. in. This is a loss in streneth of about 15% and resulted from a 17% reduction in cement.

In Fig. 7 the core strengths of the various test, sections are plotted against the corresnonding vater-cement ratio. The curve through the points has the characteristic trend of vatercement ratio, strength curves for workable mixtures. Thet the results of these tests, made on mixtures which vith ordinary finishing methods vould be classed as unvorkable, follow the water-cement ratio, strength law is significant. It indicates that the principal advantage of the vibratory finisher, in as far as the effect on strength is concerned, is gained from the fact that the use of vibration permits the manipulation of harsher mixtures with lower water content, thus bringing them into the category of workable mixtures.

For purposes of comparison, Abrams' water-cement ratio curve is also shom in Fig. 7. While the two curves are not parallel the general trends are the same. The difference in strength shown by the two curves for a given water-cement ratio is undoubtedly due to the fact that modern cement is considerably stronger than that with which Abrams performed his exneriments.

FIG. 6

RELATION BETWEEN COMPRESSIVE STRENGTH OF CORES AND CEMENT FACTOR OF CONCRETE

LEGEND

$A-2-1: 1.76: 3.37$	0	$B-1 \cdot 1: 2.02: 3.48$	\square
$A-3-1: 167: 3.50$	0	$B-2-1: 2.03: 3.74$	\square
$A-4-1: 158: 3.62$	0	$B-3-1: 2.02: 4.04$	Δ
$A-5-1: 1.53: 3.68$	\oplus	$B-4-1: 2.05: 4.32$	円

Each plotted point represents
the average of 25 tests (5 cores from each of 5 test sections).

$$
F / G .7
$$

REL ATION BETWEEN COMPRESSIVE STRENGTH OF CORES AND WATER CEMENT RATIO OF CONCRETE

Each platted point represents
the average of 25 tests (5 cores
from each of 5 test sections).

A fairly consistent relation between the modulus of rupture of the slabs and the compressive strength of the cores was noted and is shown in Fig. 8. On the average the flexural strength for each mixture was about 14% of the compressive strength.

Absorption and Density Test of Cores

The average absorption and density for the cores of the varinus mixtures are charted in Fig. 9. The chart indicates that the Series B mixtures had slightly grester absorntion and higher voids (lower density) than the Series A mixtures. From a practical standpoint the difference is so small that it is insignificant. Further, no individual mixture of either series showed any advantage over the other mixtures of the series.

Durability Tests The results of the freezing and thaving on of Cores per cents lost from the cores of each mixture at the end of the number of cycles of freezing and thawing indicated. Perusal of the table will show that there is no consistent relation between the concrete proportions and the results of the freezing and thawing tests. None of the mixtures were definitely lacking in resistance to freezing and thaving, and all of them compare favorably with tests of standard concrete pavement mixtures now in general use.

Observations of Observations of the surface of the various Finished Pavement
standin standing difference in surface characteristics except for some of the A-5 and B-4 test sections. On these an occasional area was observed in which the coarse aggregate narticles were not sufficiently covered with mortar to ive a smooth surface texture. Aside from these areas the surface of the entire roject was reasonably uniform and similar in texture to that on other projects where the same materials had been used with ordinary finishing methods.

Observations of the edges of the navement after the forms had been removed showed little honeycombing below the lin curb but a considerable amount was found in the lip curbine on practically all the test sections. This is attributed not anly to the harshness of the mixture but also to the loss of vorkability caused by the concrete drying out in the interval betmeen the time of mixing and the molding of the curb. Where these harsh mixtures are used on a project it will be necessary either to improve the method of molaing the lin curb or to novide batches of workable concrete for that purpose.

A detailed condition survey of all the test sectinns was made when the pavement was eiphteen months old. All sections

FIG. 8

RELATION BETWEEN MODULUS OF RUPTURE OF SLABS \& COMPRESSIVE STRENGTH OF CORES REMOVED FROM PAVEM'T

Each plotted point represents
the average of 25 tests (5 from each of five test sections).

$$
\text { FIG. } 9
$$

RESULTS OF ABSORPTION AND DENSITY TESTS

> Each block represents
> the average of six tests
> from four test sections.

Series "A "Mixtures Series " β " Mixtures

Per Cent Loss in , reifht of Specimens After the
Indicated Number of Test bycies, averafe of ix
Cores from sach Vix.

Cycles of ereezing and Thewing

M1x	30	60	8.3	94	110	125	140	155	$\because 70$	15=	205
A2	0.1	0.8	2.7	4.2	6.2	10.1	18.4	29.0	43.9	52.6	84.2
A3	0.1	1.6	5.9	9.0	11.1	19.4	41.2	5 c. 2	82.7	84.9	90.8
A4	0.0	0.2	3.2	6.9	9.2	20.2	27.4	36.2	$68 \cdot 5$	8.8 .9	100.0
A5	0.0	0.9	3.8	5.9	Q. 1	20.7	31,3	41. 21	$68^{2} \cdot 5$	36.6	97.6
21	0.1	1.9	4.5	5.7	9.1	20.5	24.3	*2n.2	33.3	20.7	79.5
22	0.4	2.4	6.4	12.	17.8	35.4	40.0	45.7	56.2	28.3	96.2
23	0.0	1.0	3.2	$\therefore .5$	$\bigcirc \cdot 7$	17.3	29.0	46.0	74.0	2.1	93.7
S4	0.1	3.3	12.5	15.1	12.1	2.2 .2	26.1	33.7	51.8	51.2	77.8

were found to be in good condition ang no defects which would indicate differences in the structural quality of the varjous test sections were noted. There were numerous smell areas of n thin, laitance scale throughout the nroject, but thore wn no relation betreen the concrete proportions and the accurrence of this scale. This type of scale ofton occurs on novenents finished by ordinary methods. It is not considered objectionable as it never progresses in depth.

Lest mixtures for Dased on all the observetions and tests, waterials Used with the materials and methods of handing
the concrete used on this project, the A-4 mixture (1:1.54:3.68) was considered the best if improvement in quality without increased cost is desired; the B-3 mixture (1:2.02:4.04) was considered the best if the maximum decrease in cost vithout sacrifice of quality is desired. The large increase in the amount of honeycombina in the slabs of these two mixtures over that in the A-3 and B-2 mixtures would indicate that the latter should be recommended for use. However, as pointed out previously, it is believec that the use of the wooden separators in forming the slabs caused more honeyconbing than would have occurred vhere the seperstors were not present, and thet the use of the $\mathrm{A}-4$ and $\mathrm{B}-3$ mixtures is fustified.

[^0]: * Previously an investigation and report on the vibreting screed type of finishing mechine hed been made.

